Applied Biochemistry and Biotechnology

, Volume 173, Issue 8, pp 2287–2296 | Cite as

Bioelectricity Production from Soil Using Microbial Fuel Cells

  • Agnieszka Wolińska
  • Zofia Stępniewska
  • Arletta Bielecka
  • Jakub Ciepielski
Article

Abstract

Microbial fuel cells (MFCs) are a device using microorganisms as biocatalysts for transforming chemical energy into bioelectricity. As soil is an environment with the highest number of microorganisms and diversity, we hypothesized that it should have the potential for energy generation. The soil used for the study was Mollic Gleysol collected from the surface layer (0–20 cm). Four combinations of soil MFC differing from each other in humidity (full water holding capacity [WHC] and flooding) and the carbon source (glucose and straw) were constructed. Voltage (mV) and current intensity (μA) produced by the MFCs were recorded every day or at 2-day intervals. The fastest and the most effective MFCs in voltage generation (372.2 ± 5 mV) were those constructed on the basis of glucose (MFC-G). The efficiency of straw MFCs (MFC-S) was noticeable after 2 weeks (319.3 ± 4 mV). Maximal power density (P max = 32 mW m−2) was achieved by the MFC-G at current density (CD) of 100 mA m−2. Much lower values of P max (10.6–10.8 mW m−2) were noted in the MFC-S at CD of ca. 60–80 mA m−2. Consequently, soil has potential for production of renewable energy.

Keywords

Microbial fuel cell Soil Electricity generation Soil microorganisms 

References

  1. 1.
    Vologni, V., Kakarla, R., Angelidaki, I., & Min, B. (2013). Bioprocess and Biosystems Engineering, 36, 635–642.CrossRefGoogle Scholar
  2. 2.
    Mao, L., & Verwoerd, W. S. (2013). International Journal of Energy and Environmental Engineering, 4, 1–18.CrossRefGoogle Scholar
  3. 3.
    Quan, X., Quan, Y., Tao, K., & Jiang, X. (2013). Bioresource Technology, 128, 259–265.CrossRefGoogle Scholar
  4. 4.
    Won, K., Kim, Y. H., An, S., Lee, H. J., Park, S., Choi, Y. K., et al. (2013). Applied Biochemistry and Biotechnology, 171, 1194–1202.CrossRefGoogle Scholar
  5. 5.
    Wolińska, A., Stępniewska, Z., Wołoszyn, A., Pytlak, A., & Dziuba, A. (2011). Acta Agrophysica, 194, 7–11.Google Scholar
  6. 6.
    Roesch , L. F. W., Fulthorpe, R R., Riva, A., Casella, G., Hadwin, A. K. M., Kent, A. D., et al. (2007). The ISME Journal, 1-8.Google Scholar
  7. 7.
    Torsvik, V., Goksoyr, J., & Daae, F. (1990). Current Opinion in Microbiology, 5, 240–245.CrossRefGoogle Scholar
  8. 8.
    Black, H. I. J., Perekh, N. R., Chaplow, J. S., Monson, F., Watkins, J., Creamer, R., et al. (2003). Journal of Environmental Management, 67, 255–266.CrossRefGoogle Scholar
  9. 9.
    An, J., Kim, B., Nam, J., Ng, H. Y., & Chang, I. S. (2013). Bioresource Technology, 127, 138–142.CrossRefGoogle Scholar
  10. 10.
    Ball, P. (2007). Nature, 449, 388.CrossRefGoogle Scholar
  11. 11.
    Özkaya, B., Cetnikaya, A. Y., Cakmakci, M., Kardağ, D., & Sahinkaya, E. (2013). Bioprocess and Biosystems Engineering, 36, 399–405.CrossRefGoogle Scholar
  12. 12.
    Rabaey, K., & Verstraete, W. (2005). Trends in Biotechnology, 23, 291–298.CrossRefGoogle Scholar
  13. 13.
    Davis, F., & Higson, S. P. J. (2007). Biosensors and Bioelectronics, 22, 1224–1235.CrossRefGoogle Scholar
  14. 14.
    Wang, H., Jiang, S. C., Wang, Y., & Xiao, B. (2013). Bioresource Technology, 138, 109–116.CrossRefGoogle Scholar
  15. 15.
    Cai, J., Zheng, P., Zhang, J., Xie, Z., Li, W., & Sun, P. (2013). Bioresource Technology, 129, 224–228.CrossRefGoogle Scholar
  16. 16.
    Liu, J. L., Lowy, D. A., Baumann, R. G., & Tender, L. M. (2007). Journal of Applied Microbiology, 102, 177–183.CrossRefGoogle Scholar
  17. 17.
    Oh, S. T., Kim, J. R., Premier, G. C., Lee, T. H., Kim, C., & Sloan, W. T. (2010). Biotechnology Advances, 28, 871–881.CrossRefGoogle Scholar
  18. 18.
    Yang, Y., Sun, G., & Xu, M. (2011). Journal of Chemical Technology and Biotechnology, 86, 625–632.CrossRefGoogle Scholar
  19. 19.
    Banach, A. M., Banach, K., Visser, E. J. W., Stępniewska, Z., Smits, A. J. M., et al. (2009). Biogeochemistry, 92, 247–262.CrossRefGoogle Scholar
  20. 20.
    Reimers, C. E., Tender, L. M., & Lovley, D. R. (2001). Environmental Science and Technology, 35, 192–195.CrossRefGoogle Scholar
  21. 21.
    Song, T., Xiao, P., Wu, X., & Zhou, C. C. (2013). Applied Biochemistry and Biotechnology, 170, 1241–1250.CrossRefGoogle Scholar
  22. 22.
    Piechocki, J., Neugebauerr, M., & Sołowiej, P. (2010). Inżynieria Rolnicza, 3, 165–170.Google Scholar
  23. 23.
    Niessen, J., Harnisch, F., Rosenbeum, M., Schröder, U., & Scholz, F. (2006). Electrochemistry Communications, 8, 869–873.CrossRefGoogle Scholar
  24. 24.
    Liang, P., Wei, J., & Huang, X. (2013). Frontiers of Environmental Science and Engineering, 7, 913–919.Google Scholar
  25. 25.
    Pant, D., Bogaert, G. V., Diels, L., & Vanbroekhoven, K. (2010). Bioresource Technology, 101, 1533–1543.CrossRefGoogle Scholar
  26. 26.
    Yang, F., Ren, L., Pu, Y., & Logan, B. E. (2013). Bioresource Technology, 128, 784–787.CrossRefGoogle Scholar
  27. 27.
    Bullen, R. A., Arnot, T. C., Lakeman, J. B., & Wlash, F. C. (2006). Biosensors and Bioelectronics, 21, 2015–2045.CrossRefGoogle Scholar
  28. 28.
    Wolińska, A., & Stępniewska, Z. (2011). Soil Tillage and Microbial Activities, 7, 111–143.Google Scholar
  29. 29.
    Wolińska, A., & Stępniewska, Z. (2012). Dehydrogenases, 8, 183–210.Google Scholar
  30. 30.
    Włodarczyk, T. (2000). International Agrophysics, 14, 365–376.Google Scholar
  31. 31.
    Logan, B. E. (2009). Nature Reviews Microbiology, 7, 375–381.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Agnieszka Wolińska
    • 1
  • Zofia Stępniewska
    • 1
  • Arletta Bielecka
    • 1
  • Jakub Ciepielski
    • 1
  1. 1.Department of Biochemistry and Environmental Chemistry, Institute of BiotechnologyThe John Paul II Catholic University of LublinLublinPoland

Personalised recommendations