Advertisement

Applied Biochemistry and Biotechnology

, Volume 173, Issue 8, pp 2005–2018 | Cite as

Thermo- and Sulfate-Controllable Bioelectrocatalysis of Glucose Based on Horseradish Peroxidase and Glucose Oxidase Embedded in Poly(N,N-diethylacrylamide) Hydrogel Films

  • Huiqin Yao
  • Ling Lin
  • Peng Wang
  • Hongyun LiuEmail author
Article

Abstract

Dual-responsive poly(N,N-diethylacrylamide) (PDEA) hydrogel films with entrapped horseradish peroxidase (HRP) and glucose oxidase (GOD) were successfully prepared on electrode surface with a simple one-step polymerization procedure under mild conditions, designated as PDEA-HRP-GOD. Cyclic voltammetric (CV) response of electroactive probe K3Fe(CN)6 at the film electrodes displayed reversible thermo- and sulfate-responsive switching behavior. For example, at 25 °C, the K3Fe(CN)6 demonstrated a well-defined CV peak pair with large peak currents for the films, showing the on state, while at 40 °C, the CV response was greatly suppressed and the system was at the off state. The influence of temperature and Na2SO4 concentration on the switching behavior of the film system was not independent or separated, but was synergetic. The responsive mechanism of the system was ascribed to the structure change of PDEA component in the films with temperature and sulfate concentration. This switching property of the PDEA-HRP-GOD films could be further used to realize dual-responsive catalytic oxidation of glucose sequentially by HRP and GOD entrapped in the films with Fe(CN)6 3− as the mediator through changing the surrounding temperature and Na2SO4 concentration. This system may establish a foundation for fabricating a new type of multi-switchable electrochemical biosensors based on bienzyme electrocatalysis.

Keywords

Dual-switchable bioelectrocatalysis Bienzyme Horseradish peroxidise Glucose oxidase Poly(N,N-diethylacrylamide) hydrogel 

Notes

Acknowledgments

The financial support from the Natural Science Foundation of China (NSFC 21105004 and 21265015) and the Major Research Plan of NSFC (21233003) is acknowledged.

Supplementary material

12010_2014_987_MOESM1_ESM.doc (1.4 mb)
ESM 1 (DOC 1.44 MB)

References

  1. 1.
    Scheller, F. W., Wollenberger, U., Warsinke, A., & Lisdat, F. (2001). Research and development in biosensors.Current Opinion Biotechnology, 12, 35–40.CrossRefGoogle Scholar
  2. 2.
    Chaubey, A., & Malhotra, B. D. (2002). Mediated biosensors.Biosensors and Bioelectronics, 17, 441–456.CrossRefGoogle Scholar
  3. 3.
    Murphy, L. (2006). Biosensors and bioelectrochemistry.Current Opinion in Biotechnology, 10, 177–184.Google Scholar
  4. 4.
    Conrado, R. J., Varner, J. D., & Delisa, M. P. (2008). Engineering the spatial organization of metabolic enzymes: mimicking nature's synergy.Current Opinion Biotechnology, 19, 492–499.CrossRefGoogle Scholar
  5. 5.
    Shi, J., Cha, T.-G., Claussen, J. C., Diggs, A. R., Choi, J. H., & Porterfield, D. M. (2011). Microbiosensors based on DNA modified single-walled carbon nanotubeand Pt black nanocomposites.Analyst, 136, 4916–4924.CrossRefGoogle Scholar
  6. 6.
    Gamella, M., Campuzano, S., Conzuelo, F., Curiel, J. A., Munoz, R. A., Reviejo, J., & Pingarrón, J. M. (2010). Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines.Talanta, 81, 925–933.CrossRefGoogle Scholar
  7. 7.
    Nieh, C., Kitazumi, Y., Shirai, O., & Kano, K. (2013). Sensitive d-amino acid biosensor based on oxidase/peroxidase system mediated by pentacyanoferrate-bound polymer.Biosensors and Bioelectronics, 47, 350–355.CrossRefGoogle Scholar
  8. 8.
    Loaiza, O. A., Laocharoensuk, R., Burdick, J., Rodriguez, M. C., Pingarron, J. M., Pedrero, M., & Wang, J. (2007). Adaptive orientation of multifunctional nanowires for magnetic control of bioelectrocatalytic processes.Angewandte Chemie International Edition, 119, 1530–1533.Google Scholar
  9. 9.
    Willner, I., & Katz, E. (2003). Magnetic control of electrocatalytic and bioelectrocatalytic processes.Angewandte Chemie International Edition, 42, 4576–4588.CrossRefGoogle Scholar
  10. 10.
    Tam, T. K., Strack, G., Pita, M., & Katz, E. (2009). Biofuel cell controlled by enzyme logic systems.Journal of the American Chemical Society, 131, 11670–11671.CrossRefGoogle Scholar
  11. 11.
    Katz, E., & Privman, V. (2010). Enzyme-based logic systems for information processing.Chemical Society Reviews, 39, 1835–1857.CrossRefGoogle Scholar
  12. 12.
    Yao, H., & Hu, N. (2011). Triply responsive films in bioelectrocatalysis with a binary architecture: combined layer-by-layer assembly and hydrogel polymerization.Journal of Physical Chemistry B, 115, 6691–6699.Google Scholar
  13. 13.
    Tam, T. K., Ornatska, M., Pita, M., Minko, S., & Katz, E. (2008). Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications.Journal of Physical Chemistry C, 112, 8438–8445.CrossRefGoogle Scholar
  14. 14.
    Song, S., & Hu, N. (2010). “On−off” switchable bioelectrocatalysis synergistically controlled by temperature and sodium sulfate concentration based on poly(N-isopropylacrylamide) films.Journal of Physical Chemistry B, 114, 5940–5945.Google Scholar
  15. 15.
    Katz, E., & Willner, I. (2003). A biofuel cell with electrochemically switchable and tunable power output.Journal of the American Chemical Society, 125, 6803–6813.CrossRefGoogle Scholar
  16. 16.
    Blonder, R., Katz, E., Willner, I., Wray, V., & Buckmann, A. F. (1997). Application of a nitrospiropyran-FAD-reconstituted glucose oxidase and charged electron mediators as optobioelectronic assemblies for the amperometric transduction of recorded optical signals: control of the “on”−“off” direction of the photoswitch.Journal of the American Chemical Society, 119, 11747–11757.CrossRefGoogle Scholar
  17. 17.
    Hirsch, R., Katz, E., & Willner, I. (2000). Magneto-switchable bioelectrocatalysis.Journal of the American Chemical Society., 122, 12053–12054.CrossRefGoogle Scholar
  18. 18.
    Liang, Y., Song, S., Yao, H., & Hu, N. (2011). Triply switchable bioelectrocatalysis based on poly(N-isopropylacrylamide) hydrogel films with immobilized glucose oxidase.Electrochimica Acta, 56, 5166–5173.CrossRefGoogle Scholar
  19. 19.
    Song, S., & Hu, N. (2010). Dual-switchable bioelectrocatalysis synergistically controlled by pH and perchlorate concentration based on poly(4-vinylpyridine) films.Journal of Physical Chemistry B, 114, 11689–11695.Google Scholar
  20. 20.
    Liang, Y., Liu, H., Zhang, K., & Hu, N. (2012). Triply switchable bioelectrocatalysis based on poly(N, N-diethylacrylamide-co-4-vinylpyridine) copolymer hydrogel films with immobilized glucose oxidase.Electrochimica Acta, 60, 456–463.CrossRefGoogle Scholar
  21. 21.
    Zhang, K., Liang, Y., Liu, D., & Liu, H. (2012). An on-off biosensor based on multistimuli-responsive polymer films with a binary architecture and bioelectrocatalysis.Sensors & Actuators B: Chemical, 173, 367–376.CrossRefGoogle Scholar
  22. 22.
    Liu, D., Liu, H., & Hu, N. (2012). pH-, suger-, and temperature-sensitive electrochemical switch amplified by enzymatic reaction and controlled by logic gates based on semi-interpenetrating polymer networks.Journal of Physical Chemistry B, 116, 1700–1709.Google Scholar
  23. 23.
    Maeda, Y., Yamamoto, H., & Ikeda, I. (2001). Effects of ionization of incorporated imidazole groups on the phase transitions of poly(N-isopropylacrylamide), poly(N, N-diethylacrylamide), and poly(N-vinylcaprolactam) in water.Langmuir, 17, 6855–6859.CrossRefGoogle Scholar
  24. 24.
    Chen, J., Liu, M., Liu, H., Ma, L., Gao, C., Zhu, S., & Zhang, S. (2010). Synthesis and properties of thermoand pH-sensitive poly(diallyldimethylammonium chloride)/poly(N, N-diethylacrylamide) semi-IPN hydrogel.Chemical Engineering Journal, 159, 247–256.CrossRefGoogle Scholar
  25. 25.
    Mao, H., Li, C., Zhang, Y., Bergbreiter, D. E., & Cremer, P. S. (2003). Measuring LCSTs by novel temperature gradient methods: evidence for intermolecular interactions in mixed polymer solutions.Journal of the American Chemical Society, 125, 2850–2851.CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Liu, M., Bian, F., Wang, B., Chen, S., & Jin, S. (2006). The effect of NaCl on the conformational behavior of acenaphthylene labeled poly(N, N-diethylacrylamide) in dilute aqueous solution.Macromolecular Chemistry and Physics, 207, 104–110.CrossRefGoogle Scholar
  27. 27.
    Panayiotou, M., & Freitag, R. (2005). Influence of the synthesis conditions and ionic additives on the swelling behavior of thermo-responsive polyalkylacrylamide hydrogels.Polymer, 46, 6777–6785.CrossRefGoogle Scholar
  28. 28.
    Liu, T., Fang, J., Zhang, Y., & Zeng, Z. (2008). The effect of salt and pH on the phase transition behaviors of pH and temperature-responsive poly(N, N-diethylacrylamide-co-methylacrylic acid).Macromolecular Research, 16, 670–675.CrossRefGoogle Scholar
  29. 29.
    Kulys, J. J., Pesliakiene, M. V., & Samalius, A. S. (1981). The development of bienzyme glucose electrodes.Bioelectrochemistry and Bioenergetics, 8, 81–88.CrossRefGoogle Scholar
  30. 30.
    Ohara, T. J., Vreeke, M. S., Battaglini, F., & Heller, A. (1993). Bienzyme sensors based on “electrically wired” peroxidise.Electroanalysis, 5, 825–831.CrossRefGoogle Scholar
  31. 31.
    Delvaux, M., Walcarius, A., & Demoustier-Champagne, S. (2005). Bienzyme HRP–GOx-modified gold nanoelectrodes for the sensitive amperometric detection of glucose at low overpotentials.Biosensors and Bioelectronics, 20, 1587–1594.CrossRefGoogle Scholar
  32. 32.
    Suarez, G., Jackson, R. J., Spoors, J. A., & McNeil, C. J. (2007). Chemical introduction of disulfide groups on glycoproteins: a direct protein anchoring scenario.Analytical Chemistry, 79, 1961–1969.CrossRefGoogle Scholar
  33. 33.
    Jeykumari, D. R. S., & Narayanan, S. S. (2009). Fabrication of an amperometric bienzyme biosensing system with neutral red functionalized carbon nanotubes.Analyst, 134, 1618–1622.CrossRefGoogle Scholar
  34. 34.
    Chen, H., Xi, F., Gao, X., Chen, Z., & Lin, X. (2010). Bienzyme bionanomultilaye relectrode for glucose biosensing based on functional carbon nanotubes and sugar–lectin biospecific interaction.Analytical Biochemistry, 403, 36–42.CrossRefGoogle Scholar
  35. 35.
    Yao, H., & Hu, N. (2010). pH-controllable on−off bioelectrocatalysis of bienzyme layer-by-layer films assembled by concanavalin A and glucoenzymes with an electroactive mediator.Journal of Physical Chemistry B, 114, 9926–9933.Google Scholar
  36. 36.
    Panayiotou, M., & Freitag, R. (2005). Synthesis and characterisation of stimuli-responsive poly (N, N'-diethylacrylamide) hydrogels.Polymer, 46, 615–621.CrossRefGoogle Scholar
  37. 37.
    Ding, X., Fries, D., & Jun, B. (2006). A study of hydrogel therma-dynamics using Fourier transform infrared spectrometer.Polymer, 47, 4718–4725.CrossRefGoogle Scholar
  38. 38.
    Chen, J., Liu, M., Liu, H., & Ma, L. (2009). Synthesis, swelling and drug release behavior of poly(N, N-diethylacrylamide-co-N-hydroxymethyl acrylamide) hydrogel.Materials Science and Engineering C, 29, 2116–2123.CrossRefGoogle Scholar
  39. 39.
    Chu, L., Zou, X., Knoll, W., & Forch, R. (2008). Thermosensitive surfaces fabricated by plasma polymerization of N, N-diethylacrylamide.Surface and Coating Technology, 202, 2047–2051.CrossRefGoogle Scholar
  40. 40.
    Jia, N., Zhou, Q., Liu, L., Yan, M., & Jiang, Z. (2005). Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived tin oxide/gelatin composite films.Journal of Electroanalytical Chemistry, 580, 213–221.CrossRefGoogle Scholar
  41. 41.
    Theorell, H., & Ehrenberg, A. (1951). Spectrophotometric, magnetic, and titrimetric studies on the heme-linked groups in myoglobin.Acta Chemica Scandinavica, 5, 823–848.CrossRefGoogle Scholar
  42. 42.
    George, P., & Hanania, G. (1953). A spectrophotometric study of ionizations in methaemoglobin.Biochemical Journal, 55, 236–243.Google Scholar
  43. 43.
    Katz, E., & Willner, I. (2003). Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-Sensors, and enzyme biosensors.Electroanalysis, 15, 913–947.CrossRefGoogle Scholar
  44. 44.
    Sabatani, E., Rubinstein, I., Maoz, R., & Sagiv, J. (1987). Monolayer-based ultra-microelectrodes for the study of very rapid electrode kinetics.Journal of Physical Chemistry, 91, 6663–6669.Google Scholar
  45. 45.
    Zhang, Y., Furyk, S., Bergbreiter, D. E., & Cremer, P. S. (2005). Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series.Journal of the American Chemical Society, 127, 14505–14510.CrossRefGoogle Scholar
  46. 46.
    Jeykumari, D. R. S., & Narayanan, S. S. (2008). A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores.Biosensors and Bioelectronics, 23, 1686–1693.CrossRefGoogle Scholar
  47. 47.
    Patolsky, F., Zayats, M., Katz, E., & Willner, I. (1999). Precipitation of an insoluble product on enzyme monolayer electrodes for biosensor applications: characterization by faradaic impedance spectroscopy, cyclic voltammetry, and microgravimetric quartz crystal microbalance analyses.Analytical Chemistry, 71, 3171–3180.CrossRefGoogle Scholar
  48. 48.
    Li, F., Wang, Z., Chen, W., & Zhang, S. (2009). A simple strategy for one-step construction of bienzyme biosensor by in-situ formation of biocomposite film through electrodeposition.Biosensors and Bioelectronics, 24, 3030–3035.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of ChemistryBeijing Normal UniversityBeijingPeople’s Republic of China
  2. 2.Department of ChemistryNingxia Medical UniversityYinchuanPeople’s Republic of China
  3. 3.Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of ChemistryBeijing Normal UniversityBeijingPeople’s Republic of China

Personalised recommendations