Advertisement

Applied Biochemistry and Biotechnology

, Volume 173, Issue 7, pp 1896–1906 | Cite as

Enhanced l-Lactic Acid Production from Biomass-Derived Xylose by a Mutant Bacillus coagulans

  • Zhaojuan Zheng
  • Cong Cai
  • Ting Jiang
  • Mingyue Zhao
  • Jia Ouyang
Article

Abstract

Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient l-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for l-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett–Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l−1l-lactic acid was obtained from 100 g l−1 xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l−1l-lactic acid was obtained in 36 h and the yield was 83.09 %.

Keywords

Bacillus coagulans Xylose l-lactic acid Lignocellulosic materials Corn stove prehydrolysates 

Notes

Acknowledgments

The authors are grateful to the National Natural Science Foundation of China (31200443 and 31300487), the Natural Science Foundation of Jiangsu Province of China (BK20130970), the Program for New Century Excellent Talents in University (NCET-0988), the Excellent Youth Foundation of Jiangsu Province of China (BK2012038), the Open Project of State Key Lab of Microbial Technology of Shandong University (M201305), and a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institution for financial support.

References

  1. 1.
    Gao, C., Ma, C. Q., & Xu, P. (2011). Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 29, 930–939.CrossRefGoogle Scholar
  2. 2.
    Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85, 413–423.CrossRefGoogle Scholar
  3. 3.
    Cui, F. J., Li, Y. B., & Wan, C. X. (2011). Lactic acid production from corn stover using mixed cultures of Lactobacillus rhamnosus and Lactobacillus brevis. Bioresource Technology, 102, 1831–1836.CrossRefGoogle Scholar
  4. 4.
    Ge, X. Y., Yuan, J., Qin, H., & Zhang, W. G. (2011). Improvement of L-lactic acid production by osmotic-tolerant mutant of Lactobacillus casei at high temperature. Applied Microbiology and Biotechnology, 89, 73–78.CrossRefGoogle Scholar
  5. 5.
    Guo, W., Jia, W., Li, Y., & Chen, S. (2010). Performances of Lactobacillus brevis for producing lactic acid from hydrolysate of lignocellulosics. Applied Biochemistry and Biotechnology, 161, 124–136.CrossRefGoogle Scholar
  6. 6.
    Li, Z., Han, L., Ji, Y. Z., Wang, X. N., & Tan, T. W. (2010). Fermentative production of L-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochemical Engineering Journal, 49, 138–142.CrossRefGoogle Scholar
  7. 7.
    Liu, B. B., Yang, M. H., Qi, B. K., Chen, X. R., Su, Z. G., & Wan, Y. H. (2010). Optimizing L-(+)-lactic acid production by thermophile Lactobacillus plantarum As.1.3 using alternative nitrogen sources with response surface method. Biochemical Engineering Journal, 52, 212–219.CrossRefGoogle Scholar
  8. 8.
    Nakano, S., Ugwu, C. U., & Tokiwa, Y. (2012). Efficient production of D-(-)-lactic acid from broken rice by Lactobacillus delbrueckii using Ca(OH)2 as a neutralizing agent. Bioresource Technology, 104, 791–794.CrossRefGoogle Scholar
  9. 9.
    Okano, K., Yoshida, S., Yamada, R., Tananka, T., Ogino, C., Fukuda, H., et al. (2009). Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Applied and Environmental Microbiology, 75, 7858–7861.CrossRefGoogle Scholar
  10. 10.
    Wang, L. M., Zhao, B., Liu, B., Yang, C. Y., Yu, B., Li, Q. G., et al. (2010). Efficient production of l-lactic acid from cassava powder by Lactobacillus rhamnosus. Bioresource Technology, 101, 7895–7901.CrossRefGoogle Scholar
  11. 11.
    Doran-Peterson, J., Cook, D. M., & Brandon, S. K. (2008). Microbial conversion of sugars from plant biomass to lactic acid or ethanol. The Plant Journal, 54, 582–592.CrossRefGoogle Scholar
  12. 12.
    Bustos, G., Moldes, A. B., Cruz, J. M., & Domínguez, J. M. (2005). Influence of the metabolism pathway on lactic acid production from hemicellulosic trimming vine shoots hydrolyzates using Lactobacillus pentosus. Biotechnology Progress, 21, 793–798.CrossRefGoogle Scholar
  13. 13.
    Tanaka, K., Komiyama, A., Sonomoto, K., Ishizaki, A., Hall, S. J., & Stanbury, R. (2002). Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO-1. Applied Microbiology and Biotechnology, 60, 160–167.CrossRefGoogle Scholar
  14. 14.
    Ouyang, J., Ma, R., Zheng, Z. J., Cai, C., Zhang, M., & Jiang, T. (2013). Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Bioresour. Bioresource Technology, 135, 475–480.CrossRefGoogle Scholar
  15. 15.
    Budhavaram, N. K., & Fan, Z. L. (2009). Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology, 100, 5966–5972.CrossRefGoogle Scholar
  16. 16.
    Ouyang, J., Cai, C., Chen, H., Jiang, T., & Zheng, Z. Z. (2012). Efficient non-sterilized fermentation of biomass-derived xylose to lactic acid by a thermotolerant Bacillus coagulans NL01. Applied Biochemistry and Biotechnology, 168, 2387–2397.CrossRefGoogle Scholar
  17. 17.
    Patel, M. A., Ou, M. S., Harbrucker, R., Aldrich, H. C., Buszko, M. L., Ingram, L. O., et al. (2006). Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environmental Microbiology, 72, 3228–3235.CrossRefGoogle Scholar
  18. 18.
    Bischoff, K. M., Liu, S. Q., Hughes, S. R., & Rich, J. O. (2010). Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnology Letters, 32, 823–828.CrossRefGoogle Scholar
  19. 19.
    Walton, S. L., Biscoff, K. M., van Heiningen, A. R. P., & van Walsum, G. P. (2010). Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9. Journal of Industrial Microbiology and Biotechnology, 37, 823–830.CrossRefGoogle Scholar
  20. 20.
    Qin, J. Y., Zhao, B., Wang, X. W., Wang, L. M., Yu, B., Ma, Y. H., et al. (2009). Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS ONE, 4, e4359.CrossRefGoogle Scholar
  21. 21.
    Qin, J. Y., Wang, X. W., Zheng, Z. J., Ma, C. Q., Tang, H. Z., & Xu, P. (2010). Production of l-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresource Technology, 101, 7570–7576.Google Scholar
  22. 22.
    Wang, L. M., Xue, Z. W., Zhao, B., Yu, B., Xu, P., & Ma, Y. H. (2013). Jerusalem artichoke powder: a useful material in producing high-optical-purity L-lactate using an efficient sugar-utilizing thermophilic Bacillus coagulans strain. Bioresource Technology, 130, 174–180.Google Scholar
  23. 23.
    Wang, L. M., Zhao, B., Liu, B., Yu, B., Ma, C. Q., Su, F., et al. (2010). Efficient production of L-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101, 7908–7915.Google Scholar
  24. 24.
    Cai, C., Jiang, T., Zheng, Z. Z., & Ouyang, J. (2014). Improved xylose utilization of Bacillus coagulans for production of lactic acid by atmospheric and room temperature plasma mutation. Food Science, 35, 125–129 (In Chinese).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Zhaojuan Zheng
    • 1
  • Cong Cai
    • 1
  • Ting Jiang
    • 1
  • Mingyue Zhao
    • 1
  • Jia Ouyang
    • 1
  1. 1.College of Chemical EngineeringNanjing Forestry UniversityNanjingPeople’s Republic of China

Personalised recommendations