Advertisement

Applied Biochemistry and Biotechnology

, Volume 173, Issue 7, pp 1858–1869 | Cite as

Enhancement of Biogas Production by Co-digestion of Potato Pulp with Cow Manure in a CSTR System

  • Akbar Sanaei-Moghadam
  • Mohammad Hossein Abbaspour-Fard
  • Hasan Aghel
  • Mohammad Hossein Aghkhani
  • Javad Abedini-Torghabeh
Article

Abstract

Anaerobic digestion (AD) process is a well-established method to generate energy from the organic wastes both from the environmental and economical perspectives. The purpose of present study is to evaluate energy production from potato wastes by incorporating cow manure into the process. Firstly, a laboratory pilot of one-stage biogas production was designed and built according to continuously stirred tank reactor (CSTR) system. The setup was able to automatically control the environmental conditions of the process including temperature, duration, and rate of stirring. AD experiment was exclusively performed on co-digestion of potato peel (PP) and cow manure (CM) in three levels of mixing ratio including 20:80, 50:50, 80:20 (PP:CM), and 0:100 as control treatment based on the volatile solid (VS) weight without adding initial inoculums. After hydraulic retention time (HRT) of 50 days on average 193, 256, 348, and 149 norm liter (LN) (kg VS)−1, methane was produced for different mixing ratios, respectively. Statistical analysis shows that these gas productions are significantly different. The average energy was determined based on the produced methane which was about 2.8 kWh (kg VS)−1, implying a significant energy production potential. The average chemical oxygen demand (COD) removal of treatments was about 61 %, showing that it can be leached significantly with high organic matter by the employed pilot. The energy efficiency of 92 % of the process also showed the optimum control of the process by the pilot.

Keywords

Anaerobic digestion Renewable energy Biogas Potato peel CSTR system Biowaste Food industry waste 

References

  1. 1.
    Flannergy, T. (2005). The weather markers. Melbourne: Text Publishing.Google Scholar
  2. 2.
    Li, X. (2005). Energy Policy, 33, 2237–2243.CrossRefGoogle Scholar
  3. 3.
    Demirbas, A., & Ozturk, T. (2005). International Journal of Green Energy, 1(4), 483–494.CrossRefGoogle Scholar
  4. 4.
    Yadvika, Santosh, Sreekrishnan, T. R., Kohli, S., & Rana, V. (2004). Bioresource Technology, 95, 1–10.CrossRefGoogle Scholar
  5. 5.
    Gallert, C., Henning, A., & Winter, J. (2003). Water Research, 37, 1433–1441.CrossRefGoogle Scholar
  6. 6.
    Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Progress in Energy and Combustion Science, 34, 755–781.CrossRefGoogle Scholar
  7. 7.
    Fantozzy, F., & Burette, C. (2009). Bioresource Technology, 100, 5783–5789.CrossRefGoogle Scholar
  8. 8.
    Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2004). Renewable Energy, 29, 1811–1823.CrossRefGoogle Scholar
  9. 9.
    Alvarez, J. A., Otero, L., & Lema, J. M. (2010). Bioresource Technology, 101, 1153–1158.CrossRefGoogle Scholar
  10. 10.
    Sharma, D.K., (2002). PhD thesis, Centre for Rural Development and Technology, Indian Institute of Technology (Delhi, India).Google Scholar
  11. 11.
    Saev, M., Koumanova, B., & Simeonov, I. (2009). Journal of the University of Chemical Technology and Metallurgy, 44(1), 55–60.Google Scholar
  12. 12.
    El-Mashad, H., & Zhang, R. (2010). Bioresource Technology, 101, 4021–4028.CrossRefGoogle Scholar
  13. 13.
    Callaghan, F. J., Wase, D. A. J., Thayanithy, K., & Forster, C. F. (2002). Biomass and Bioenergy, 27(1), 71–77.CrossRefGoogle Scholar
  14. 14.
    Misi, S. N., & Forster, C. F. (2001). Bioresource Technology, 80(1), 19–28.CrossRefGoogle Scholar
  15. 15.
    Aminian, A. (2012). M.Sc thesis. Ferdowsi University of Mashhad, Mashhad-Iran.Google Scholar
  16. 16.
    APHA (1998). 20th ed. American Public Health Association, Washington, DC, USA.Google Scholar
  17. 17.
    ISO14235 (1998). Soil quality—determination of organic carbon by sulfochromic oxidation.Google Scholar
  18. 18.
    Deublein, D., & Steinhauser, A. (2008). Biogas from waste and renewable resources: an introduction. Wiley.Google Scholar
  19. 19.
    Hublin, A., Zoki, T. I., & Zelic, B. (2012). Biotechnology and Bioprocess Engineering, 17, 1284–1293.CrossRefGoogle Scholar
  20. 20.
    Kryvoruchko, V., Machmuller, A., Bodiroza, V., Amon, B., & Amon, T. (2009). Biomass and Bioenergy, 33, 620–627.CrossRefGoogle Scholar
  21. 21.
    Ozkan, B., Kurklu, A., & Akcao, H. (2004). Biomass and Bioenergy, 26, 89–95.CrossRefGoogle Scholar
  22. 22.
    Demircan, V., Ekinci, K., Keener, H. M., Akbolat, D., & Ekinci, C. (2006). Energy Conversion and Management, 47, 1761–1769.CrossRefGoogle Scholar
  23. 23.
    Erdal, G., Esengun, K., Erdal, H., & Gunduz, O. (2007). Energy, 32, 35–41.CrossRefGoogle Scholar
  24. 24.
    Parawira, W., Murto, M., Read, J. S., & Mattiasson, B. (2005). Process Biochemistry, 40, 2945–2952.CrossRefGoogle Scholar
  25. 25.
    Parawira, W., Readc, J. S., Mattiassona, B., & Bjornsson, L. (2008). Biomass and Bioenergy, 32, 44–50.CrossRefGoogle Scholar
  26. 26.
    Gallert, C., & Winter, J. (2008). Bioresource Technology, 99, 170–178.CrossRefGoogle Scholar
  27. 27.
    Nayono, S. E., Gallert, C., & Winter, J. (2010). Bioresource Technology, 101, 6987–6993.CrossRefGoogle Scholar
  28. 28.
    Shokuh, A., et al. (2009). Environmental Science and Technology (Iran), 11(1), 31–38.Google Scholar
  29. 29.
    Li, R., Chen, S., & Li, X. (2010). Applied Biochemistry and Biotechnology, 160, 643–654.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Akbar Sanaei-Moghadam
    • 1
    • 2
  • Mohammad Hossein Abbaspour-Fard
    • 2
  • Hasan Aghel
    • 2
  • Mohammad Hossein Aghkhani
    • 2
  • Javad Abedini-Torghabeh
    • 1
  1. 1.Laboratory of Waste Management Organization of Mashhad MunicipalityMashhadIran
  2. 2.Bio-System Engineering DepartmentFerdowsi University of MashhadMashhadIran

Personalised recommendations