Advertisement

Applied Biochemistry and Biotechnology

, Volume 173, Issue 6, pp 1553–1563 | Cite as

Genome Shuffling and Ribosome Engineering of Streptomyces actuosus for High-Yield Nosiheptide Production

  • Qingling Wang
  • Dong Zhang
  • Yudong Li
  • Fuming Zhang
  • Cao Wang
  • Xinle Liang
Article

Abstract

Nosiheptide is one of the EU-approved sulfur-containing peptides in feed industry to inhibit the growth of the majority of Gram-positive bacteria. The main purpose of this study is directed to breed the high nosiheptide-producers by genome shuffling and ribosome engineering in Streptomyces actuosus AW7. The starting population for shuffling was generated by combining 60Coγ-irradiation with LiCl mutagenesis treatments on the spores. After four rounds of protoplast fusion exposed to streptomycin as adaptive pressure, a high-yield recombinant strain D92 was obtained. In a 10-L fermenter, nosiheptide production reached 1.54 g/L which was 9.20-fold compared to that of the parental strain. Hyphae development, metabolic process, and ribosomal protein S12 sequence were investigated to characterize the differentiation among the recombinants. Several mutations in S12 were believed to be responsible to streptomycin resistance in the tested strain. The results demonstrated that the combination of genome shuffling and ribosome engineering is an efficient approach to breed high-yield industrial strains.

Keywords

Nosiheptide Genome shuffling Ribosome engineering Sequence difference Streptomyces actuosus 

Notes

Acknowledgments

The work was financially supported by the National Nature and Science Foundation of China (3117175)

Conflict of Interests

The authors declare that they have no conflict of interests.

Supplementary material

12010_2014_948_Fig6_ESM.gif (123 kb)
Fig. S1

(GIF 123 kb)

12010_2014_948_MOESM1_ESM.tif (219 kb)
High Resolution Image (TIFF 218 kb)
12010_2014_948_Fig7_ESM.gif (155 kb)
Fig. S2

(GIF 155 kb)

12010_2014_948_MOESM2_ESM.tif (290 kb)
High Resolution Image (TIFF 289 kb)
12010_2014_948_Fig8_ESM.gif (38 kb)
Fig. S3

(GIF 38 kb)

12010_2014_948_MOESM3_ESM.tif (7.8 mb)
High Resolution Image (TIFF 7978 kb)
12010_2014_948_Fig9_ESM.gif (119 kb)
Fig. S4

(GIF 119 kb)

12010_2014_948_MOESM4_ESM.tif (121 kb)
High Resolution Image (TIFF 120 kb)

References

  1. 1.
    Benazet, F., Cartier, M., Florent, J., Godard, C., Jung, G., Lunel, J., et al. (1979). Nosiheptide, a sulfur-containing peptide antibiotic isolated from Streptomyces actuosus 40037. Experientia, 36, 414–416.CrossRefGoogle Scholar
  2. 2.
    Wang, S. F., Zhou, S. X., & Liu, W. (2013). Opportunities and challenges from current investigations into the biosynthetic logic of nosiheptide-represented thiopeptide antibiotics. Current Opinion in Chemical Biology, 17, 626–634.CrossRefGoogle Scholar
  3. 3.
    Yu, Y., Duan, L., Zhang, Q., Liao, R. J., Ding, Y., Pan, H., et al. (2009). Nosiheptide biosynthesis featuring a unique indole side ring formation on the characteristic thiopeptide framework. ACS Chemical Biology, 4, 855–864.CrossRefGoogle Scholar
  4. 4.
    Haste, N. M., Thienphrapa, W., Tran, D. N., Loesgen, S., Sun, P., Nam, S. J., et al. (2012). Activity of the thiopeptide antibiotic nosiheptide against contemporary strains of methicillin-resistant Staphylococcus aureus. Journal of Antibiotics (Tokyo), 65, 593–598.CrossRefGoogle Scholar
  5. 5.
    Harms, J. M., Wilson, D. N., Schluenzen, F., Connell, S. R., Stachelhaus, T., Zaborowska, Z., et al. (2008). Translational regulation via L11: molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Molecular Cell, 30, 26–38.CrossRefGoogle Scholar
  6. 6.
    Cromwells, G. L., Stahlys, T. S., Speer, V. C., & O’Kelly, R. (1984). Efficacy of nosiheptide as a growth promotant for growing-finishing swine—a cooperative study. Journal of Animal Science, 59, 1125–1128.Google Scholar
  7. 7.
    Zhang, Y. X., Perry, K., Vinci, V. A., Powell, K., Stemmer, W. P., & del Cardayre, S. B. (2002). Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 415, 644–646.CrossRefGoogle Scholar
  8. 8.
    Zheng, D. Q., Wu, X. C., Wang, P. M., Chi, X. Q., Tao, X. L., Li, P., et al. (2011). Drug resistance marker-aided genome shuffling to improve acetic acid tolerance in Saccharomyces cerevisiae. The Journal of Industrial Microbiology and Biotechnology, 38, 415–422.CrossRefGoogle Scholar
  9. 9.
    Hida, H., Yamada, T., & Yamada, Y. (2007). Genome shuffling of Streptomyces sp. U121 for improved production of hydroxycitric acid. Applied Microbiology and Biotechnology, 73, 1387–1393.CrossRefGoogle Scholar
  10. 10.
    Zheng, P., Liu, M., Liu, X. D., Du, Q. Y., Ni, Y., & Sun, Z. H. (2012). Genome shuffling improves thermotolerance and glutamic acid production of Corynebacteria glutamicum. World Journal of Microbiology and Biotechnology, 28, 1035–1043.CrossRefGoogle Scholar
  11. 11.
    Li, W., Chen, G., Gu, L., Zeng, W., & Liang, Z. (2013). Genome shuffling of Aspergillus niger for improving transglycosylation activity. Applied Biochemistry and Biotechnology, 172, 50–61.CrossRefGoogle Scholar
  12. 12.
    Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S., & Ochi, K. (1996). Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). Journal of Bacteriology, 178, 7276–7284.Google Scholar
  13. 13.
    Ochi, K., Okamoto, S., Tozawa, Y., Inaoka, T., Hosaka, T., Xu, J., et al. (2004). Ribosome engineering and secondary metabolite production. Advances in Applied Microbiology, 56, 155–184.CrossRefGoogle Scholar
  14. 14.
    Ochi, K. (2007). From microbial differentiation to ribosome engineering. Bioscience, Biotechnology, and Biochemistry, 71, 1373–1386.CrossRefGoogle Scholar
  15. 15.
    Tamehiro, N., Hosaka, T., Xu, J., Hu, H., Otake, N., & Ochi, K. (2003). Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus. Applied and Environmental Microbiology, 69, 6412–6417.CrossRefGoogle Scholar
  16. 16.
    Wang, G., Hosaka, T., & Ochi, K. (2008). Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Applied and Environmental Microbiology, 74, 2834–2840.CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Wang, X. J., Diao, J. N., He, H. R., Zhang, Y. J., & Xiang, W. S. (2013). Streptomycin resistance-aided genome shuffling to improve doramectin productivity of Streptomyces avermitilis NEAU1069. The Journal of Industrial Microbiology and Biotechnology, 40, 877–889.CrossRefGoogle Scholar
  18. 18.
    Liu, Z., Zhao, X., & Bai, F. (2013). Production of xylanase by an alkaline-tolerant marine-derived Streptomyces viridochromogenes strain and improvement by ribosome engineering. Applied Microbiology and Biotechnology, 97, 4361–4368.CrossRefGoogle Scholar
  19. 19.
    Lv, X. A., Jin, Y. Y., Li, Y. D., Zhang, H., & Liang, X. L. (2013). Genome shuffling of Streptomyces viridochromogenes for improved production of avilamycin. Applied Microbiology and Biotechnology, 97, 641–648.CrossRefGoogle Scholar
  20. 20.
    Zhang, X., Fen, M., Shi, X., Bai, L., & Zhou, P. (2008). Overexpression of yeast S-adenosylmethionine synthetase metK in Streptomyces actuosus leads to increased production of nosiheptide. Applied Microbiology and Biotechnology, 78, 991–995.CrossRefGoogle Scholar
  21. 21.
    Manteca, A., Alvarez, R., Salazar, N., Yague, P., & Sanchez, J. (2008). Mycelium differentiation and antibiotic production in submerged cultures of Streptomyces coelicolor. Applied and Environmental Microbiology, 74, 3877–3886.CrossRefGoogle Scholar
  22. 22.
    Nakajima, A., Wada, K., Katayama, K., Saubermann, L., Osawa, E., Nagase, H., et al. (2002). Gene expression profile after peroxisome proliferator activator receptor-gamma ligand administration in dextran sodium sulfate mice. Journal of Gastroenterology, 37(Suppl 14), 62–66.CrossRefGoogle Scholar
  23. 23.
    Mocek, U., Chen, L. C., Keller, P. J., Houck, D. R., Beale, J. M., & Floss, H. G. (1989). 1H and 13C NMR assignments of the thiopeptide antibiotic nosiheptide. The Journal of Antibiotics, 42, 1643–1648.CrossRefGoogle Scholar
  24. 24.
    Stemmer, & Willem, P. C. (2001). Molecular breeding of genes, pathways and genomes by DNA shuffling. Journal of Molecular Catalysis B, 19–20, 3–12.Google Scholar
  25. 25.
    Xu, B., Jin, Z., Wang, H., Jin, Q., Jin, X., & Cen, P. (2008). Evolution of Streptomyces pristinaespiralis for resistance and production of pristinamycin by genome shuffling. Applied Microbiology and Biotechnology, 80, 261–267.CrossRefGoogle Scholar
  26. 26.
    Mocek, U., Knaggs, A. R., Tsuchiya, R., Nguyen, T., Beale, J. M., & Floss, H. G. (1993). Biosynthesis of modified peptide antibiotic nosiheptide in Streptomyces actuosus. Journal of the American Chemical Society, 115, 7557–7568.CrossRefGoogle Scholar
  27. 27.
    Chaudhary, A. K., Dhakal, D., & Sohng, J. K. (2013). An insight into the “-omics” based engineering of streptomycetes for secondary metabolite overproduction. BioMed Research International, 2013, 968518–968533.CrossRefGoogle Scholar
  28. 28.
    Yang, H., Wang, Z., Shen, Y., Wang, P., Jia, X., Zhao, L., et al. (2010). Crystal structure of the nosiheptide-resistance methyltransferase of Streptomyces actuosus. Biochemistry, 49, 6440–6450.CrossRefGoogle Scholar
  29. 29.
    Singh, K., Wangikar, P., & Jadhav, S. (2012). Correlation between pellet morphology and glycopeptide antibiotic balhimycin production by Amycolatopsis balhimycina DSM 5908. The Journal of Industrial Microbiology and Biotechnology, 39, 27–35.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Qingling Wang
    • 1
  • Dong Zhang
    • 1
  • Yudong Li
    • 1
  • Fuming Zhang
    • 2
  • Cao Wang
    • 1
    • 3
  • Xinle Liang
    • 1
  1. 1.Department of Biological EngineeringZhejiang Gongshang UniversityHangzhouChina
  2. 2.Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  3. 3.Zhejiang University City CollegeHangzhouChina

Personalised recommendations