Applied Biochemistry and Biotechnology

, Volume 173, Issue 6, pp 1537–1552 | Cite as

Dry Anaerobic Co-digestion of Cow Dung with Pig Manure for Methane Production

  • Jianzheng Li
  • Ajay Kumar Jha
  • Tri Ratna Bajracharya


The performance of dry anaerobic digestions of cow dung, pig manure, and their mixtures into different ratios were evaluated at 35 ± 1 °C in single-stage batch reactors for 63 days. The specific methane yields were 0.33, 0.37, 0.40, 0.38, 0.36, and 0.35 LCH4/gVSr for cow dung to pig manure ratios of 1:0, 4:1, 3:2, 2:3, 1:4, and 0:1, respectively, while volatile solid (VS) and chemical oxygen demand (COD) removal efficiencies were 48.59, 50.79, 53.20, 47.73, 46.10, and 44.88 % and 55.44, 57.96, 60.32, 56.96, 53.32, and 50.86 %, respectively. The experimental results demonstrated that the co-digestions resulted in 5.10–18.01 % higher methane yields, 2.03–12.95 % greater VS removals, 2.98–12.52 % greater COD degradation and so had positive synergism. The various mixtures of pig manure with cow dung might persuade a better nutrient balance and dilution of high ammonia concentration in pig manure and therefore enhanced digester performance efficiency and higher biogas yields. The dry co-digestion of 60 % cow dung and 40 % pig manure achieved the highest methane yield and the greatest organic materials removal efficiency than other mixtures and controls.


Dry anaerobic digestion Co-digestion Manures Biogas Organic materials removal 



The authors gratefully acknowledge the National Natural Science Foundation of China (Grant No. 51178136) and the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Grant No. HCK201206) for valuable financial support.


  1. 1.
    Demirer, G. N., & Othman, M. (2007). Two-phase thermophilic acidification and mesophilic methanogenesis anaerobic digestion of waste-activated sludge. Environmental Engineering Science, 25(9), 1291–1300.CrossRefGoogle Scholar
  2. 2.
    Lema, J. M., & Omil, F. (2001). Anaerobic treatment: a key technology for a sustainable management of wastes in Europe. Water Science and Technology, 44, 133–140.Google Scholar
  3. 3.
    Oliveira, L. B., & Rosa, L. P. (2003). Brazilian waste potential: energy, environmental, social and economic benefits. Energy Policy, 31, 1481–1491.CrossRefGoogle Scholar
  4. 4.
    Walker, L., Charles, W., & Cord-Ruwisch, R. (2009). Comparison of static, in-vessel composting of MSW with thermophilic anaerobic digestion and combinations of the two processes. Bioresource Technology, 100(16), 3799–3807.CrossRefGoogle Scholar
  5. 5.
    Lou, X. F., & Nair, J. (2009). The impact of landfilling and composting on greenhouse gas emissions—a review. Bioresource Technology, 100(16), 3792–3798.CrossRefGoogle Scholar
  6. 6.
    Veeken, A., Kalyuzhnyi, S., Scharff, H., & Hamelers, B. (2000). Effect of pH and VFA on hydrolysis of organic solid waste. Journal of Environmental Engineering – ASCE, 126, 1076–1081.CrossRefGoogle Scholar
  7. 7.
    De Baere, L. (2000). Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology, 41(3), 283–290.Google Scholar
  8. 8.
    Jha, A. K., Li, J., Nies, L., & Zhang, L. (2011). Research advances in dry anaerobic digestion process of solid organic wastes. African Journal of Biotechnology, 10(65), 14242–14253.Google Scholar
  9. 9.
    Pavan, P., Battistoni, P., Mata-Alvarez, J., & Cecchi, F. (2000). Performance of thermophilic semi-dry anaerobic digestion process changing the feed biodegradability. Water Science and Technology, 41(3), 75–81.Google Scholar
  10. 10.
    Liu, G. T., Peng, X. Y., & Long, T. R. (2006). Advance in high-solid anaerobic digestion of organic fraction of municipal solid waste. Journal of Central South University of Technology, 13, 151–157.CrossRefGoogle Scholar
  11. 11.
    Li, D., Yuan, Z., & Sun, Y. (2010). Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresource Technology, 101, 2722–2728.CrossRefGoogle Scholar
  12. 12.
    Jha, A. K., He, J., Li, J. & Zheng, G. (2010). Effect of substrate concentration on methane fermentation of cattle dung. Proceedings of the International Conference on Challenges in Environmental Science and Computer Engineering. Wuhan, P. R. China. March 6–7, pp. 512–515.Google Scholar
  13. 13.
    Fongsatitkul, P., Elefsiniotis, P., & Wareham, D. G. (2010). Effect of mixture ratio, solids concentration and hydraulic retention time on the anaerobic digestion of the organic fraction of municipal solid waste. Waste Management Research, 28, 811–817.CrossRefGoogle Scholar
  14. 14.
    Zinder, S. H. (1993). Physiological ecology of methanogens. In J. G. Ferry (Ed.), Methanogenesis: ecology, physiology, biochemistry and genetic (pp. 128–206). New York: Chapman & Hall.CrossRefGoogle Scholar
  15. 15.
    Guendouz, J., Buffière, P., Cacho, J., Carrère, M., & Delgenes, J. P. (2010). Dry anaerobic digestion in batch mode: design and operation of a laboratory-scale, completely mixed reactor. Waste Management, 30, 1768–1771.CrossRefGoogle Scholar
  16. 16.
    De Baere, L. (2006). Will anaerobic digestion of solid waste survive in the future? Water Science Technology, 53(8), 187–194.CrossRefGoogle Scholar
  17. 17.
    Li, X., Li, L., Zheng, M., Fu, G., & Lar, J. S. (2009). Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy and Fuels, 23, 4635–4639.CrossRefGoogle Scholar
  18. 18.
    Li, J., Jha, A. K., He, J., Ban, Q., Chang, S., & Wang, P. (2011). Assessment of the effects of dry anaerobic co-digestion of cow dung with waste water sludge on biogas yield and biodegradability. International Journal of Physical Science, 6(15), 3679–3688.Google Scholar
  19. 19.
    Naomichi, N., & Yutaka, N. (2007). Recent development of anaerobic digestion processes for energy recovery from wastes. Journal of Bioscience and Bioengineering, 103(2), 105–112.CrossRefGoogle Scholar
  20. 20.
    VanVelsen, A. F. M. (1979). Adaption of methanogenic sludge to high ammonia-nitrogen concentrations. Water Research, 13, 995–999.CrossRefGoogle Scholar
  21. 21.
    Webb, A. R., & Freda, R. (1985). The anaerobic digestion of poultry manure: variation of gas yield with influent concentration and ammonium-nitrogen levels. Agricultural Wastes, 14(2), 135–156.CrossRefGoogle Scholar
  22. 22.
    Gacho, C. C., Flavier, M. E., Alfafara, C. G., Briones, N. D., Alcantara, A. J., Rodriguez, E. B., & Silverio, C. M. (2010). Anaerobic filter bed baffled reactor (AFBBR) for the treatment of food-processing wastewater. Journal of Environment Science Management, 13(1), 12–26.Google Scholar
  23. 23.
    APHA. (1995). Standard methods for the examination of water and wastewater [J] (19th ed.). Washington: American Public Health Association.Google Scholar
  24. 24.
    Østergaard, N. (1985). Biogasproduktion i det thermofile temperaturinterval. STUB rapport nr. 21. Kemiteknik. Taastrup: Dansk Teknologisk Institut (in Danish).Google Scholar
  25. 25.
    Bassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196, 80–83.CrossRefGoogle Scholar
  26. 26.
    Hansen, K. H., Angelidaki, I., & Ahring, B. K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 32, 5–12.CrossRefGoogle Scholar
  27. 27.
    Angelidaki, I., & Ahring, B. (1993). Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Applied Microbiology and Biotechnology, 38, 560–564.CrossRefGoogle Scholar
  28. 28.
    De Baere, L. A., Devocht, M., vanAssche, P., & Verstraete, W. (1984). Influence of high NaCl and NH4Cl salt levels on methanogenic associations. Water Research, 18(5), 543–548.CrossRefGoogle Scholar
  29. 29.
    Montero, B., Garcia-Morales, J. L., Sales, D., & Solera, R. (2008). Evolution of microorganisms in thermophilic-dry anaerobic digestion. Bioresource Technology, 99(8), 3233–3243.CrossRefGoogle Scholar
  30. 30.
    Zhao, H. W., & Viraraghavan, T. (2004). Analysis of the performance of an anaerobic digestion system at the Rigna Wastewater Treatment Plant. Bioresource Technology, 95(3), 301–307.CrossRefGoogle Scholar
  31. 31.
    Hobson, P. N., Bousfield, S. & Summers, R. (1981). Methane production from agricultural and domestic. Waste. Appl. Sci. publication, London, pp. 269Google Scholar
  32. 32.
    Yeole, T. Y., & Ranande, D. R. (1992). Alternative feedstock for biogas. Tropical Animal Production, 9(3), 10–16.Google Scholar
  33. 33.
    Bhattacharya, T. K., & Mishra, T. N. (2005). Biodegradability of dairy cattle manure under dry anaerobic fermentation process. Journal of Institute of Engineers (India): Agricultural Engineering Division, 84, 9–11.Google Scholar
  34. 34.
    Luning, L., VanZundert, E. H., & Brinkmann, A. J. (2003). Comparison of dry and wet digestion for solid waste. Water Science and Technology, 48(4), 15–20.Google Scholar
  35. 35.
    Mata-Alvarez, J., Mace, S., & Labres, P. (2000). Anaerobic digestion of organic solid wastes: an overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jianzheng Li
    • 1
  • Ajay Kumar Jha
    • 1
    • 2
  • Tri Ratna Bajracharya
    • 2
  1. 1.State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental EngineeringHarbin Institute of TechnologyHarbinthe People’s Republic of China
  2. 2.Pulchowk Campus, Institute of EngineeringTribhuvan UniversityLalitpurNepal

Personalised recommendations