Advertisement

Applied Biochemistry and Biotechnology

, Volume 173, Issue 4, pp 989–1002 | Cite as

The Application of the Starfish Hatching Enzyme for the Improvement of Scar and Keloid Based on the Fibroblast-Populated Collagen Lattice

  • Zhi Jiang Li
  • Sang Moo Kim
Article

Abstract

Various bioactivities of the starfish hatching enzyme (HE) including collagen gel contraction, MMPs activity, hydroxyproline release, and gene regulation based on the fibroblast-populated collagen lattice (FPCL) in three-dimensional medium were investigated for the improvement of scar and keloid. The starfish HE significantly inhibited the collagen gel contraction over 2 days of culture. MMP-2 and MMP-9 activities were also identified by gelatin zymography and RT-PCR products with both HE and collagenase treatments, which resulted in the high amount of hydroxyproline release. The HE treatment on the FPCL significantly inhibited the fibroblast proliferation at 3 days of culture. The LPS-induced NO level and iNOS mRNA expression at low concentrations of HE presented a certain ability to inflammatory response. The COX-2 mRNA from the FPCL indicated no significant inflammation-mediated activity at 5 μg/mL of HE, whereas the cytokines of TNF-α and IL-1β were significantly higher than those of the control. Hence, the starfish hatching enzyme can regulate the fibroblast-populated collagen gel conditions by the contraction, MMP production, inflammatory gene expression, etc. Therefore, the starfish HE could be a potential cosmeceutical to heal the scar and keloid tissue.

Keywords

Hatching enzyme Collagen gel contraction MMP Gene regulation 

Abbreviation

HE

Hatching enzyme

ECM

Extracellular matrix

MMP

Matrix metalloprotease

TIMP

Tissue inhibitors metalloproteases

NO

Nitric oxide

FPCL

Fibroblast-populated collagen lattice

iNOS

Inducible nitric oxide synthase

TNF-α

Tumor necrosis factor-alpha

IL-1β

Interleukin-1 beta

TGF

Transfer growth factor

Notes

Acknowledgments

This research was supported by the Korea Sea Grant Program (GangWon Sea Grant) funded by the Ministry of Oceans and Fisheries in Korea.

References

  1. 1.
    Wolfram, D., Tzankov, A., Pülzl, P., & Piza-Katzer, H. (2009). Hypertrophic scars and keloids-a review of their pathophysiology, risk factors, and therapeutic management. Dermatologic Surgery, 35, 171–181.CrossRefGoogle Scholar
  2. 2.
    Fujiwara, M., Muragaki, Y., & Ooshima, A. (2005). Keloid-derived fibroblasts show increased secretion of factors involved in collagen turnover and depend on matrix metalloproteinase for migration. British Journal of Dermatology, 153, 295–300.CrossRefGoogle Scholar
  3. 3.
    Abergel, R. P., Pizzurro, D., Meeker, C. A., Lask, G., Matsuoka, L. Y., Minor, R. R., et al. (1985). Biochemical composition of the connective tissue in keloids and analysis of collagen metabolism in keloid fibroblast cultures. Journal of Investigative Dermatology, 84, 384–390.CrossRefGoogle Scholar
  4. 4.
    Nien, Y. D., Han, Y. P., Tawil, B., Chan, L. S., Tuan, T. L., & Garner, W. L. (2003). Fibrinogen inhibits fibroblast-mediated contraction of collagen. Wound Repair and Regeneration, 11, 380–385.CrossRefGoogle Scholar
  5. 5.
    Clark, R. A. (1993). Regulation of fibroplasia in cutaneous wound repair. American Journal of the Medical Sciences, 306, 42–48.CrossRefGoogle Scholar
  6. 6.
    Stricklin, G. P., Li, L., Jancic, V., Wenczak, B. A., & Nanney, L. B. (1993). Localization of mRNAs representing collagenase and TIMP in sections of healing human burn wounds. American Journal of Pathology, 143, 1657–1666.Google Scholar
  7. 7.
    Neely, A. N., Clendening, C. E., Gardner, J., Greenhalgh, D. G., & Warden, G. D. (1999). Gelatinase activity in keloids and hypertrophic scars. Wound Repair and Regeneration, 7, 166–171.CrossRefGoogle Scholar
  8. 8.
    Oriente, A., Fedarko, N. S., Pacocha, S. E., Huang, S. K., Lichtenstein, L. M., & Essayan, D. M. (2000). Interleukin-13 modulates collagen homeostasis in human skin and keloid fibroblasts. Journal of Pharmacology and Experimental Therapeutics, 292, 988–994.Google Scholar
  9. 9.
    Uchida, G., Yoshimura, K., Kitano, Y., Okazaki, M., & Harii, K. (2003). Tretinoin reverses upregulation of matrix metalloproteinase-13 in human keloid-derived fibroblasts. Experimental Dermatology, 2, 35–42.CrossRefGoogle Scholar
  10. 10.
    Eickelberg, O., Köhler, E., Reichenberger, F., Bertschin, S., Woodtli, T., Erne, P., et al. (1999). American Journal of Physiology, 276, 814–824.Google Scholar
  11. 11.
    Li, Z. J., & Kim, S. M. (2013). A novel hatching enzyme from starfish Asteriasamurensis: purification, characterization, and cleavage specificity. Applied Biochemistry and Biotechnology, 169, 1386–1396.CrossRefGoogle Scholar
  12. 12.
    Norway. Aqua Bio Technology, Norway, December. 2014. http://www.aquabiotechnology.com/index.php?id=5.
  13. 13.
    Li, Z. J. & Kim, S. M. (2014). Structural identification and proteolytic effects of the hatching enzyme from starfish Asterias amurensis. Protein and Peptide Letter. doi: 10.2174/0929866521666140221153026.
  14. 14.
    Sato, M., Ishikawa, O., & Miyachi, Y. (1998). Distinct patterns of collagen gene expression are seen in normal and keloid fibroblasts grown in three-dimensional culture. British Journal of Dermatology, 138, 938–943.CrossRefGoogle Scholar
  15. 15.
    Fang, Q., Schulte, N. A., Kim, H., Kobayashi, T., Wang, X., Miller-Larsson, A., et al. (2013). Effect of budesonide on fibroblast-mediated collagen gel contraction and degradation. Journal of Inflammation Research, 6, 25–33.Google Scholar
  16. 16.
    García-Carreño, F. L., Dimes, L. E., & Haard, N. F. (1993). Substrate-gel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Analytical Biochemistry, 214, 65–69.CrossRefGoogle Scholar
  17. 17.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  18. 18.
    Creemers, L. B., Jansen, D. C., van Veen-Reurings, A., van den Bos, T., & Everts, V. (1997). Microassay for the assessment of low levels of hydroxyproline. Biotechniques, 22, 656–658.Google Scholar
  19. 19.
    Green, L. C., Wagner, D. A., Glogowski, J., Skipper, P. L., Wishnok, J. S., & Tannenbaum, S. R. (1982). Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry, 126, 131–138.CrossRefGoogle Scholar
  20. 20.
    Diegelmann, R. F., & Evans, M. C. (2004). Wound healing: an overview of acute, fibrotic and delayed healing. Front Bioscience, 9, 283–289.CrossRefGoogle Scholar
  21. 21.
    Nagase, H., & Woessner, J. F., Jr. (1999). Minireview: matrix metalloproteinases. The Journal of Biological Chemistry, 274, 21491–21494.CrossRefGoogle Scholar
  22. 22.
    Kerkvliet, E. H., Docherty, A. J., Beertsen, W., & Everts, V. (1999). Collagen breakdown in soft connective tissue explants is associated with the level of active gelatinase A (MMP-2) but not with collagenase. Matrix Biology, 18, 373–380.CrossRefGoogle Scholar
  23. 23.
    Creemers, L. B., Jansen, I. D., Docherty, A. J., Reynolds, J. J., Beertsen, W., & Everts, V. (1998). Gelatinase A (MMP-2) and cysteine proteinases are essential for the degradation of collagen in soft connective tissue. Matrix Biology, 17, 35–46.CrossRefGoogle Scholar
  24. 24.
    Yucel, T., Mutnal, A., Fay, K., Fligiel, S. E., Wang, T., Johnson, T., et al. (2005). Matrix metalloproteinase expression in basal cell carcinoma: relationship between enzyme profile and collagen fragmentation pattern. Experimental and Molecular Pathology, 79, 151–160.CrossRefGoogle Scholar
  25. 25.
    Wang, C., Rong, Y., Ning, F., & Zhang, G. (2011). The content and ratio of type I and III collagen in skin differ with age and injury. African Journal of Biotechnology, 10, 2524–2529.Google Scholar
  26. 26.
    Ivarsson, M., McWhirter, A., Borg, T. K., & Rubin, K. (1998). Type I collagen synthesis in cultured human fibroblasts: regulation by cell spreading, platelet-derived growth factor and interactions with collagen fibers. Matrix Biology, 16, 409–425.CrossRefGoogle Scholar
  27. 27.
    Patterson, M. L., Atkinson, S. J., Knäuper, V., & Murphy, G. (2001). Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Letters, 503, 158–162.CrossRefGoogle Scholar
  28. 28.
    Wang, L., Luo, J., & He, S. (2007). Induction of MMP-9 release from human dermal fibroblasts by thrombin: involvement of JAK/STAT3 signaling pathway in MMP-9 release. BMC Cell Biology, 8, 14.CrossRefGoogle Scholar
  29. 29.
    Pilcher, B. K., Dumin, J. A., Sudbeck, B. D., Krane, S. M., Welgus, H. G., & Parks, W. C. (1997). The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. Journal of Cell Biology, 137, 1445–1457.CrossRefGoogle Scholar
  30. 30.
    Chen, X. G., Wang, Z., Liu, W. S., & Park, H. J. (2002). The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts. Biomaterials, 23, 4609–4614.CrossRefGoogle Scholar
  31. 31.
    Kauh, Y. C., Rouda, S., Mondragon, G., Tokarek, R., diLeonardo, M., Tuan, R. S., et al. (1997). Major suppression of pro-alpha1(I) type I collagen gene expression in the dermis after keloid excision and immediate intrawound injection of triamcinolone acetonide. Journal of the American Academy of Dermatology, 37, 586–589.CrossRefGoogle Scholar
  32. 32.
    Boyadjiev, C., Popchristova, E., & Mazgalova, J. (1995). Histomorphologic changes in keloids treated with Kenacort. Journal of Trauma, 38, 299–302.CrossRefGoogle Scholar
  33. 33.
    Pereira, B. J., Shapiro, L., King, A. J., Falagas, M. E., Strom, J. A., & Dinarello, C. A. (1994). Plasma levels of IL-1 beta, TNF alpha and their specific inhibitors in undialyzed chronic renal failure, CAPD and hemodialysis patients. Kidney International, 45, 890–896.CrossRefGoogle Scholar
  34. 34.
    Lavnikova, N., & Laskin, D. L. (1995). Unique patterns of regulation of nitric oxide production in fibroblasts. Journal of Leukocyte Biology, 58, 451–458.Google Scholar
  35. 35.
    Aktan, F. (2004). iNOS-mediated nitric oxide production and its regulation. Life Sciences, 75, 639–653.CrossRefGoogle Scholar
  36. 36.
    Tayler, B. S., & Geller, D. A. (2001). Regulation of the inducible nitric oxide synthase (iNOS) gene. In D. Salvemini, T. R. Billiar, Y. Vodovotz (Eds.), Nitric oxide and inflammation (pp. 1–27). Birkhauser Verlag: Springer.Google Scholar
  37. 37.
    Cuzzocre, S. (2011). Role of nitric oxide and reactive oxygen species in arthritis. In D. Salvemini, T. R. Billiar, Y. Vodovotz (Eds.), Nitric oxide and inflammation (pp. 145–160). Birkhauser Verlag: Springer.Google Scholar
  38. 38.
    Kang, K. W., Wagley, Y., Kim, H. W., Pokharel, Y. R., Chung, Y. Y., Chang, I. Y., et al. (2007). Novel role of IL-8/SIL-6R signaling in the expression of inducible nitric oxide synthase (iNOS) in murine B16, metastatic melanoma clone F10.9 cells. Free Radical Biology and Medicine, 42, 215–227.CrossRefGoogle Scholar
  39. 39.
    Bao, H. H., & You, S. G. (2011). Molecular characteristics of water-soluble extracts from Hypsizigusmarmoreus and their in vitro growth inhibition of various cancer cell lines and immunomodulatory function in Raw 264.7 cells. Bioscience Biotechnology Biochemistry, 75, 891–898.CrossRefGoogle Scholar
  40. 40.
    Furuya, A., Asano, K., Shoji, N., Hirano, K., Hamasaki, T., & Suzaki, H. (2010). Suppression of nitric oxide production from nasal fibroblasts by metabolized clarithromycin in vitro. Journal of Inflammation, 7, 56.CrossRefGoogle Scholar
  41. 41.
    Liew, F. Y., & Cox, F. E. (1991). Nonspecific defence mechanism: the role of nitric oxide. Immunology Today, 12, 17–21.CrossRefGoogle Scholar
  42. 42.
    Coon, D., Gulati, A., Cowan, C., & He, J. (2007). The role of cyclooxygenase-2 (COX-2) in inflammatory bone resorption. Journal of Endodontics, 33, 432–436.CrossRefGoogle Scholar
  43. 43.
    Zhu, Y. K., Liu, X. D., Sköld, C. M., Wang, H., Kohyama, T., Wen, F. Q., et al. (2001). Collaborative interactions between neutrophil elastase and metalloproteinases in extracelullar matrix degradation in three-dimensional collagen gels. Respiratory Research, 2, 300–305.CrossRefGoogle Scholar
  44. 44.
    Fang, Q., Liu, X., Al-Mugotir, M., Kobayashi, T., Abe, S., Kohyama, T., et al. (2006). Thrombin and TNF-alpha/IL-1beta synergistically induce fibroblast-mediated collagen gel degradation. American Journal of Respiratory Cell and Molecular Biology, 35, 714–721.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Food and Engineering, College of Food ScienceHeilongjiang Bayi Agricultural UniversityDaqingPeople’s Republic of China
  2. 2.Department of Marine Food Science and TechnologyGangneung-Wonju National UniversityGangneungRepublic of Korea

Personalised recommendations