Advertisement

Applied Biochemistry and Biotechnology

, Volume 174, Issue 3, pp 1115–1126 | Cite as

Electrochemical Sensing of Cortisol: A Recent Update

  • Aparajita Singh
  • Ajeet KaushikEmail author
  • Rajesh Kumar
  • Madhavan Nair
  • Shekhar Bhansali
Article

Abstract

Psychological stress caused by everyday lifestyle contributes to health disparities experienced by individuals. It affects many biomarkers, but cortisol — “a steroid hormone” — is known as a potential biomarker for psychological stress detection. Abnormal levels of cortisol are indicative of conditions such as Cushing’s syndrome Addison’s disease, adrenal insufficiencies and more recently post-traumatic stress disorder (PTSD). Chromatographic techniques, which are traditionally used to detect cortisol, are a complex system requiring multistep extraction/purification. This limits its application for point-of-care (POC) detection of cortisol. However, electrochemical immunosensing of cortisol is a recent advancement towards POC application. This review highlights simple, low-cost, and label-free electrochemical immunosensing platforms which have been developed recently for sensitive and selective detection of cortisol in bio-fluids. Electrochemical detection is utilized for the detection of cortisol using Anti-Cortisol antibodies (Anti-Cab) covalently immobilized on nanostructures, such as self-assembled monolayer (SAM) and polymer composite, for POC integration of sensors. The observed information can be used as a prototype to understand behavioral changes in humans such as farmers and firefighters. Keeping the future directions and challenges in mind, the focus of the BioMEMS and Microsystems Research Group at Florida International University is on development of POC devices for immunosensing, integration of these devices with microfluidics, cross validation with existing technologies, and analysis of real sample.

Keywords

Psychological stress Cortisol Electrochemical immunosensing Point-of-care application 

Notes

Acknowledgments

This work was supported by the National Science Foundation (NSF) ASSIST Nanosystems ERC (EEC-1160483) and National Institute of Health (NIH) 1RO1-DA027049. The author Rajesh Kumar acknowledges the University Grant Commission (UGC), India for the award of Raman Fellowship (ID 1001, 2013-14).

References

  1. 1.
    Kaushik, A., Vasudev, A., Arya, S. K., Pasha, S. K., & Bhansali, S. (2014). Recent advances in cortisol sensing technologies for point-of-care application. Biosensors and Bioelectronics, 53, 499–512.CrossRefGoogle Scholar
  2. 2.
    Corbalan-Tutau, D., Madrid, J. A., Nicolas, F., & Garaulet, M. (2014). Daily profile in two circadian markers "melatonin and cortisol" and associations with metabolic syndrome components. Physiology & Behavior, 123, 231–235.CrossRefGoogle Scholar
  3. 3.
    Nicolson NA. Measurement of cortisol. Handbook of physiological research methods in health psychology. SAGE Publications, Thousand Oaks, CA.Google Scholar
  4. 4.
    Delahanty, D. L., Raimonde, A. J., & Spoonster, E. (2000). Initial posttraumatic urinary cortisol levels predict subsequent PTSD symptoms in motor vehicle accident victims. Biological Psychiatry, 48(9), 940–947.CrossRefGoogle Scholar
  5. 5.
    Yehuda, R., Halligan, S. L., & Grossman, R. (2001). Childhood trauma and risk for PTSD: relationship to intergenerational effects of trauma, parental PTSD, and cortisol excretion. Development and Psychopathology, 13(3), 733–753.CrossRefGoogle Scholar
  6. 6.
    Yehuda, R., Halligan, S. L., & Bierer, L. M. (2002). Cortisol levels in adult offspring of Holocaust survivors: relation to PTSD symptom severity in the parent and child. Psychoneuroendocrinology, 27(1–2), 171–180.CrossRefGoogle Scholar
  7. 7.
    Venugopal, M., Arya, S. K., Chornokur, G., & Bhansali, S. (2011). A realtime and continuous assessment of cortisol in ISF using electrochemical impedance spectroscopy. Sensors and Actuators A: Physical, 172(1), 154–160.CrossRefGoogle Scholar
  8. 8.
    McEwen, B. S. (2002). Cortisol, Cushing’s syndrome, and a shrinking brain—new evidence for reversibility. Journal of Clinical Endocrinology & Metabolism, 87(5), 1947–1948.Google Scholar
  9. 9.
    Edwards, O. M., Courtenay-Evans, R. J., Galley, J. M., Hunter, J., & Tait, A. D. (1974). Changes in cortisol metabolism following rifampicin therapy. Lancet, 2(7880), 548–551.Google Scholar
  10. 10.
    Gatti, R., Antonelli, G., Prearo, M., Spinella, P., Cappellin, E., & De Palo, E. F. (2009). Cortisol assays and diagnostic laboratory procedures in human biological fluids. Clinical Biochemistry, 42(12), 1205–1217.CrossRefGoogle Scholar
  11. 11.
    Levine, A., Zagoory-Sharon, O., Feldman, R., Lewis, J. G., & Weller, A. (2007). Measuring cortisol in human psychobiological studies. Physiology & Behavior, 90(1), 43–53.CrossRefGoogle Scholar
  12. 12.
    de Kloet, E. R., Joels, M., & Holsboer, F. (2005). Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience, 6(6), 463–475.CrossRefGoogle Scholar
  13. 13.
    Djuric, Z., Bird, C. E., Furumoto-Dawson, A., Rauscher, G. H., Ruffin, M. T. T., Stowe, R. P., Tucker, K. L., & Masi, C. M. (2008). Biomarkers of psychological stress in health disparities research. Open Biomarkers Journal, 1, 7–19.CrossRefGoogle Scholar
  14. 14.
    Klopfenstein, B. J., Purnell, J. Q., Brandon, D. D., Isabelle, L. M., & DeBarber, A. E. (2011). Determination of cortisol production rates with contemporary liquid chromatography–mass spectrometry to measure cortisol-d3 dilution after infusion of deuterated tracer. Clinical Biochemistry, 44(5–6), 430–434.CrossRefGoogle Scholar
  15. 15.
    Chen, L.-Q., Kang, X.-J., Sun, J., Deng, J.-J., Gu, Z.-Z., & Lu, Z.-H. (2010). Application of nanofiber-packed SPE for determination of salivary-free cortisol using fluorescence precolumn derivatization and HPLC detection. Journal of Separation Science, 33(15), 2369–2375.CrossRefGoogle Scholar
  16. 16.
    Gao, W., Xie, Q., Jin, J., Qiao, T., Wang, H., Chen, L., Deng, H., & Lu, Z. (2010). HPLC-FLU detection of cortisol distribution in human hair. Clinical Biochemistry, 43(7–8), 677–682.CrossRefGoogle Scholar
  17. 17.
    Appel, D., Schmid, R. D., Dragan, C. A., Bureik, M., & Urlacher, V. B. (2005). A fluorimetric assay for cortisol. Analytical and Bioanalytical Chemistry, 383(2), 182–186.CrossRefGoogle Scholar
  18. 18.
    van Aken, M. O., Romijn, J. A., Miltenburg, J. A., & Lentjes, E. G. W. M. (2003). Automated measurement of salivary cortisol. Clinical Chemistry, 49(8), 1408–1409.CrossRefGoogle Scholar
  19. 19.
    Carrozza, C., Corsello, S. M., Paragliola, R. M., Ingraudo, F., Palumbo, S., Locantore, P., Sferrazza, A., Pontecorvi, A., & Zuppi, C. (2010). Clinical accuracy of midnight salivary cortisol measured by automated electrochemiluminescence immunoassay method in Cushing's syndrome. Annals of Clinical Biochemistry, 47(3), 228–232.CrossRefGoogle Scholar
  20. 20.
    Lippi, G., De Vita, F., Salvagno, G. L., Gelati, M., Montagnana, M., & Guidi, G. C. (2009). Measurement of morning saliva cortisol in athletes. Clinical Biochemistry, 42(9), 904–906.CrossRefGoogle Scholar
  21. 21.
    Yaneva, M., Kirilov, G., & Zacharieva, S. (2009). Midnight salivary cortisol, measured by highly sensitive electrochemiluminescence immunoassay, for the diagnosis of Cushing’s syndrome. Central European Journal of Medicine, 4(1), 59–64.CrossRefGoogle Scholar
  22. 22.
    Shi, H., Xu, X., Ding, Y., Liu, S., Li, L., & Kang, W. (2009). Determination of cortisol in human blood sera by a new Ag(III) complex–luminol chemiluminescent system. Analytical Biochemistry, 387(2), 178–183.CrossRefGoogle Scholar
  23. 23.
    Lewis, J. G., & Elder, P. A. (1985). An enzyme-linked immunosorbent assay (ELISA) for plasma cortisol. Journal of Steroid Biochemistry, 22(5), 673–676.CrossRefGoogle Scholar
  24. 24.
    Manenschijn, L., Koper, J. W., Lamberts, S. W., & van Rossum, E. F. (2011). Evaluation of a method to measure long term cortisol levels. Steroids, 76(10–11), 1032–1036.CrossRefGoogle Scholar
  25. 25.
    Shimada, M., Takahashi, K., Ohkawa, T., Segawa, M., & Higurashi, M. (1995). Determination of salivary cortisol by ELISA and its application to the assessment of the circadian rhythm in children. Hormone Research in Pædiatrics, 44(5), 213–217.CrossRefGoogle Scholar
  26. 26.
    Small, B. C., & Davis, K. B. (2002). Validation of a time-resolved fluoroimmunoassay for measuring plasma cortisol in channel catfish Ictalurus punctatus. Journal of the World Aquaculture Society, 33(2), 184–187.CrossRefGoogle Scholar
  27. 27.
    Mitchell, J. S., Lowe, T. E., & Ingram, J. R. (2009). Rapid ultrasensitive measurement of salivary cortisol using nano-linker chemistry coupled with surface plasmon resonance detection. Analyst, 134(2), 380–386.CrossRefGoogle Scholar
  28. 28.
    Shankaran, D. R., Gobi, K. V., & Miura, N. (2007). Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors and Actuators B: Chemical, 121(1), 158–177.CrossRefGoogle Scholar
  29. 29.
    Stevens, R. C., Soelberg, S. D., Near, S., & Furlong, C. E. (2008). Detection of cortisol in saliva with a flow-filtered, portable surface plasmon resonance biosensor system. Analytical Chemistry, 80(17), 6747–6751.CrossRefGoogle Scholar
  30. 30.
    Lee, H.-J., Lee, J.-H., Moon, H.-S., Jang, I.-S., Choi, J.-S., Yook, J.-G., & Jung, H.-I. (2012). A planar split-ring resonator-based microwave biosensor for label-free detection of biomolecules. Sensors and Actuators B: Chemical, 169, 26–31.CrossRefGoogle Scholar
  31. 31.
    Atashbar, M. Z., Bejcek, B., Vijh, A., & Singamaneni, S. (2005). QCM biosensor with ultra thin polymer film. Sensors and Actuators B: Chemical, 107(2), 945–951.CrossRefGoogle Scholar
  32. 32.
    Brossaud, J., Ducint, D., Gatta, B., Molimard, M., Tabarin, A., & Corcuff, J. (2012). Urinary cortisol metabolites in corticotroph and adrenal tumours. Endocrine Abstracts, 29, P55.Google Scholar
  33. 33.
    Russell, E., Koren, G., Rieder, M., & Van Uum, S. H. (2014). The detection of cortisol in human sweat: implications for measurement of cortisol in hair. Therapeutic Drug Monitoring, 36(1), 30–34.Google Scholar
  34. 34.
    VanBruggen, M. D., Hackney, A. C., McMurray, R. G., & Ondrak, K. S. (2011). The relationship between serum and salivary cortisol levels in response to different intensities of exercise. International Journal of Sports Physiology and Performance, 6(3), 396–407.Google Scholar
  35. 35.
    Arya, S. K., Chornokur, G., Venugopal, M., & Bhansali, S. (2010). Antibody modified gold micro array electrode based electrochemical immunosensor for ultrasensitive detection of cortisol in saliva and ISF. Procedia Engineering, 5, 804–807.CrossRefGoogle Scholar
  36. 36.
    Vasudev, A., Kaushik, A., Tomizawa, Y., Norena, N., & Bhansali, S. (2013). An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sensors and Actuators B: Chemical, 182, 139–146.CrossRefGoogle Scholar
  37. 37.
    Arya, S. K., Chornokur, G., Venugopal, M., & Bhansali, S. (2010). Antibody functionalized interdigitated micro-electrode (IDmicroE) based impedimetric cortisol biosensor. Analyst, 135(8), 1941–1946.CrossRefGoogle Scholar
  38. 38.
    Kumar, A., Aravamudhan, S., Gordic, M., Bhansali, S., & Mohapatra, S. S. (2007). Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized nanowire. Biosensors and Bioelectronics, 22(9–10), 2138–2144.CrossRefGoogle Scholar
  39. 39.
    Arya, S. K., Dey, A., & Bhansali, S. (2011). Polyaniline protected gold nanoparticles based mediator and label free electrochemical cortisol biosensor. Biosensors and Bioelectronics, 28(1), 166–173.CrossRefGoogle Scholar
  40. 40.
    Kaushik, A., Vasudev, A., Arya, S. K., & Bhansali, S. (2013). Mediator and label free estimation of stress biomarker using electrophoretically deposited Ag@AgO–polyaniline hybrid nanocomposite. Biosensors and Bioelectronics, 50, 35–41.CrossRefGoogle Scholar
  41. 41.
    Ueno, Y., Furukawa, K., Hayashi, K., Takamura, M., Hibino, H., & Tamechika, E. (2013). Graphene-modified interdigitated array electrode: fabrication, characterization, and electrochemical immunoassay application. Analytical Sciences, 29(1), 55–60.CrossRefGoogle Scholar
  42. 42.
    Yamaguchi, M., Matsuda, Y., Sasaki, S., Sasaki, M., Kadoma, Y., Imai, Y., Niwa, D., & Shetty, V. (2013). Immunosensor with fluid control mechanism for salivary cortisol analysis. Biosensors and Bioelectronics, 41, 186–191.CrossRefGoogle Scholar
  43. 43.
    Ricci, F., Adornetto, G., & Palleschi, G. (2012). A review of experimental aspects of electrochemical immunosensors. Electrochimica Acta, 84, 74–83.CrossRefGoogle Scholar
  44. 44.
    Wan, Y., Su, Y., Zhu, X., Liu, G., & Fan, C. (2013). Development of electrochemical immunosensors towards point of care diagnostics. Biosensors and Bioelectronics, 47, 1–11.CrossRefGoogle Scholar
  45. 45.
    Arya, S. K., Chornokur, G., Venugopal, M., & Bhansali, S. (2010). Dithiobis(succinimidyl propionate) modified gold microarray electrode based electrochemical immunosensor for ultrasensitive detection of cortisol. Biosensors and Bioelectronics, 25(10), 2296–2301.CrossRefGoogle Scholar
  46. 46.
    Moreno-Guzman, M., Eguilaz, M., Campuzano, S., Gonzalez-Cortes, A., Yanez-Sedeno, P., & Pingarron, J. M. (2010). Disposable immunosensor for cortisol using functionalized magnetic particles. Analyst, 135(8), 1926–1933.CrossRefGoogle Scholar
  47. 47.
    Liu, X., Zhao, R., Mao, W., Feng, H., & Wong, D. K. (2011). Detection of cortisol at a gold nanoparticle|Protein G-DTBP-scaffold modified electrochemical immunosensor. Analyst, 136(24), 5204–5210.CrossRefGoogle Scholar
  48. 48.
    Yamaguchi, M., Matsuda, Y., Yoshikawa, S., Sasaki, M., Imai, Y., Niwa, D., Shetty, V. Rapid hormone immunosensor with fluid control mechanism. In: Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International, 5–9 June 2011, pp 1164–1167.Google Scholar
  49. 49.
    Pasha, S. K., Kaushik, A., Vasudev, A., Snipes, S. A., & Bhansali, S. (2014). Electrochemical immunosensing of saliva cortisol. Journal of the Electrochemical Society, 161(2), B3077–B3082.CrossRefGoogle Scholar
  50. 50.
    Yamaguchi, M., Yoshikawa, S., Tahara, Y., Niwa, D., Imai, Y., Shetty, V. Point-of-use measurement of salivary cortisol levels. In: Sensors, 2009 IEEE, 25–28 Oct. 2009, pp 343–346.Google Scholar
  51. 51.
    Chantasirichot, S., & Ishihara, K. (2012). Electrospun phospholipid polymer substrate for enhanced performance in immunoassay system. Biosensors and Bioelectronics, 38(1), 209–214.CrossRefGoogle Scholar
  52. 52.
    Goldman, E. R., Anderson, G. P., Liu, J. L., Delehanty, J. B., Sherwood, L. J., Osborn, L. E., Cummins, L. B., & Hayhurst, A. (2006). Facile generation of heat-stable antiviral and antitoxin single domain antibodies from a semisynthetic llama library. Analytical Chemistry, 78(24), 8245–8255.CrossRefGoogle Scholar
  53. 53.
    Goldman, E. R., Anderson, G. P., Conway, J., Sherwood, L. J., Fech, M., Vo, B., Liu, J. L., & Hayhurst, A. (2008). Thermostable llama single domain antibodies for detection of botulinum A neurotoxin complex. Analytical Chemistry, 80(22), 8583–8591.CrossRefGoogle Scholar
  54. 54.
    Bauer, L. A., Birenbaum, N. S., & Meyer, G. J. (2004). Biological applications of high aspect ratio nanoparticles. Journal of Materials Chemistry, 14, 517–526.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Aparajita Singh
    • 1
  • Ajeet Kaushik
    • 1
    • 2
    Email author
  • Rajesh Kumar
    • 1
    • 3
  • Madhavan Nair
    • 2
  • Shekhar Bhansali
    • 1
  1. 1.BioMEMS and Microsystems Laboratory, Department of Electrical and Computer EngineeringFlorida International UniversityMiamiUSA
  2. 2.Department of Immunology, College of medicineFlorida International UniversityMiamiUSA
  3. 3.Department of PhysicsPanjab UniversityChandigarhIndia

Personalised recommendations