Applied Biochemistry and Biotechnology

, Volume 173, Issue 2, pp 522–534 | Cite as

Enhanced Lipid Production by Co-cultivation and Co-encapsulation of Oleaginous Yeast Trichosporonoides spathulata with Microalgae in Alginate Gel Beads



This study attempted to enhance biomass and lipid productivity of an oleaginous yeast Trichosporonoides spathulata by co-culturing with microalgae Chlorella spp., optimizing culture conditions, and encapsulating them in alginate gel beads. The co-culture of the yeast with microalgae Chlorella vulgaris var. vulgaris TISTR 8261 most enhanced overall biomass and lipid productivity by 1.6-fold of the yeast pure culture at 48 h and by 1.1-fold at 72 h. After optimization and scale-up in a bioreactor, this co-culture produced the highest biomass of 12.2 g/L with a high lipid content of 47 %. The dissolved oxygen monitoring system in the bioreactor showed that the microalgae worked well as an oxygen supplier to the yeast. This study also showed that the co-encapsulated yeast and microalgae could grow and produce lipid as same as their free cells did. Therefore, it is possible to apply this encapsulation technique for lipid production and simplification of downstream harvesting process. This co-culture system also produced the lipid with high content of saturated fatty acids, indicating its potential use as biodiesel feedstock with high oxidative stability.


Biodiesel feedstock Co-culture Encapsulation Lipid Oleaginous yeast 


  1. 1.
    Xue, F., Zhang, X., Luo, H., & Tan, T. (2006). Process Biochemistry, 41, 1699–1702.CrossRefGoogle Scholar
  2. 2.
    Li, Q., & Wang, M. Y. (1997). Science and Technology of Food Industry, 6, 65–69.Google Scholar
  3. 3.
    Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Journal of Bioscience and Bioengineering, 101, 87–96.CrossRefGoogle Scholar
  4. 4.
    Cheirsilp, B., Kitcha, S., & Torpee, S. (2012). Annals of Microbiology, 62, 987–993.CrossRefGoogle Scholar
  5. 5.
    Cheirsilp, B., Suwannarat, W., & Niyomdecha, R. (2011). New Biotechnology, 341, 1–7.Google Scholar
  6. 6.
    Lam, K. M., & Lee, K. T. (2012). Biochemical Engineering Journal, 191, 263–268.Google Scholar
  7. 7.
    Carrilho, E. N. V. M., No’brega, J. A., & Gilbert, T. R. (2003). Talanta, 60, 1131–1140.CrossRefGoogle Scholar
  8. 8.
    Cao, Y., Liu, Z., Cheng, G., Jing, X., & Xu, H. (2010). Chemical Engineering Journal, 164, 183–195.CrossRefGoogle Scholar
  9. 9.
    Moreira, S. M., Moreira-Santos, M., Guilhermino, L., & Ribeiro, R. (2006). Enzyme and Microbial Technology, 38, 135–141.CrossRefGoogle Scholar
  10. 10.
    Garrido, I. M. (2008). Bioresource Technology, 99, 3949–3964.CrossRefGoogle Scholar
  11. 11.
    Nussinovitch, A. (2010). Polymer macro-and micro-gel beads: Fundamentals 27 and applications (pp. 27–52). New York: Springer Science.CrossRefGoogle Scholar
  12. 12.
    Roca, E., Meinander, N., Núñez, M.J., Hahn-Hägerdal, B. and Lema, J.M. (1996). In: Progress in biotechnology—Immobilized cells—Basics and applications (pp. 173–180). The Netherlands: Elsevier B.V.Google Scholar
  13. 13.
    Winkelhausen, E., Velickova, E., Amartey, S. A., & Kuzmanova, S. (2010). Applied Biochemistry and Biotechnology, 3, 2214–2220.CrossRefGoogle Scholar
  14. 14.
    Zhou, Z., Li, G., & Li, Y. (2010). International Journal of Biological Macromolecules, 3, 21–26.CrossRefGoogle Scholar
  15. 15.
    Lee, H. H., Park, O. J., Park, J. M., & Yang, J. W. (1996). Journal of Chemical Technology and Biotechnology, 67, 255–259.CrossRefGoogle Scholar
  16. 16.
    Kitcha, S., & Cheirsilp, B. (2013). Bioenergy Research, 6(1), 300–310.CrossRefGoogle Scholar
  17. 17.
    Tansakul, P., Savaddiraksa, Y., Prasertsan, P., & Tongurai, C. (2005). Thai Journal of Agricultural Science, 38, 71–76.Google Scholar
  18. 18.
    Folch, J., Lees, M., & Stanley, G. H. S. (1957). Journal of Biological Chemistry, 226, 497–509.Google Scholar
  19. 19.
    Kosugi, Y., Takahashi, K., & Lopez, C. (1995). Journal of American Oil Chemistry Society, 72, 1281–1285.CrossRefGoogle Scholar
  20. 20.
    Xue, F., Miao, J., Zhang, X., & Tan, T. (2010). Applied Biochemistry and Biotechnology, 160, 498–503.CrossRefGoogle Scholar
  21. 21.
    Richmond, A. (1986). Handbook of microalgal mass culture. Boca Raton Florida: CRC Press, Inc.Google Scholar
  22. 22.
    Saenge, C., Cheirsilp, B., Suksaroge, T. T., & Bourtoom, T. (2011). Process Biochemistry, 46(1), 210–218.CrossRefGoogle Scholar
  23. 23.
    Li, X., Xu, H., & Wu, Q. (2007). Biotechnology and Bioengineering, 98, 764–771.CrossRefGoogle Scholar
  24. 24.
    Li, M., Liu, G. L., Chi, Z., & Chi, Z. M. (2010). Biomass and Bioenergy, 34, 101–107.CrossRefGoogle Scholar
  25. 25.
    Bellou, S., Moustogianni, A., Makri, A., & Aggelis, G. (2012). Applied Biochemistry and Biotechnology, 166, 146–158.CrossRefGoogle Scholar
  26. 26.
    Gao, C., Zhai, Y., Ding, Y., & Wu, Q. (2010). Applied Energy, 87, 756–761.CrossRefGoogle Scholar
  27. 27.
    Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Borghi, M. D. (2009). Chemical Engineering and Processing, 48, 1146–1151.CrossRefGoogle Scholar
  28. 28.
    Petkov, G., & Garcia, G. (2007). Biochemical Systematics and Ecology, 35, 281–285.CrossRefGoogle Scholar
  29. 29.
    Cai, S. Q., Hu, C. Q., & Du, S. B. (2007). Journal of Bioscience and Bioengineering, 104, 391–397.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Industrial Biotechnology, Faculty of Agro-IndustryPrince of Songkla UniversityHat YaiThailand
  2. 2.Palm Oil Products and Technology Research Center (POPTEC), Faculty of Agro-IndustryPrince of Songkla UniversityHat YaiThailand

Personalised recommendations