Applied Biochemistry and Biotechnology

, Volume 173, Issue 2, pp 449–460 | Cite as

Antibacterial Activity and Synergistic Effect of Biosynthesized AgNPs with Antibiotics Against Multidrug-Resistant Biofilm-Forming Coagulase-Negative Staphylococci Isolated from Clinical Samples

  • Roshmi Thomas
  • Aswathi P. Nair
  • Soumya KR
  • Jyothis Mathew
  • Radhakrishnan EK
Article

Abstract

Silver nanoparticles form promising template for designing antimicrobial agents against drug resistant pathogenic microorganisms. Thus, the development of a reliable green approach for the synthesis of nanoparticles is an important aspect of current nanotechnology research. In the present investigation, silver nanoparticles synthesized by a soil Bacillus sp. were characterized using UV–vis spectroscopy, FTIR, SEM, and EDS. The antibacterial potential of biosynthesized silver nanoparticles, standard antibiotics, and their conjugates were evaluated against multidrug-resistant biofilm-forming coagulase-negative S. epidermidis strains, S. aureus, Salmonella Typhi, Salmonella Paratyphi, and V. cholerae. Interestingly, silver nanoparticles (AgNPs) showed remarkable antibacterial activity against all the test strains with the highest activity against S. epidermidis strains 145 and 152. In addition, the highest synergistic effect of AgNPs was observed with chloramphenicol against Salmonella typhi. The results of the study clearly indicate the promising biomedical applications of biosynthesized AgNPs.

Keywords

Silver nanoparticle Bacillus sp. CoNS Biosynthesis Synergistic activity 

References

  1. 1.
    Begum, N. A., Mondal, S., Basu, S., Laskar, R. A., & Mandal, D. (2009). Colloids Surfaces B, 71, 113.CrossRefGoogle Scholar
  2. 2.
    Rai, M., Yadav, A., & Gade, A. (2008). Critical Reviews in Biotechnology, 28(4), 277–284.CrossRefGoogle Scholar
  3. 3.
    Thakkar, K. N., Mhatre, S. S., & Parikh, R. Y. (2010). Nanomedicine, 6(2), 257–262.CrossRefGoogle Scholar
  4. 4.
    Devi, P.S., Banerjee, S., Chowdhury, S.R., Kumar, G.S. (2012). RSC Advances, 2, 11578–11585.Google Scholar
  5. 5.
    Pugazhenthiran, N., Anandan, S., Kathiravan, G., Prakash, N. K. U., Crawford, S., & Ashokkumar, M. (2009). Journal of Nanoparticle Research, 11, 1811–1815.CrossRefGoogle Scholar
  6. 6.
    Narayanan, K. B., & Sakthivel, N. (2010). Advances in Colloid and Interface Science, 156, 1–13.CrossRefGoogle Scholar
  7. 7.
    Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Duran, N., & Rai, M. K. (2008). Journal of Biobased Materials and Bioenergy, 2, 243–247.CrossRefGoogle Scholar
  8. 8.
    Mukherjee, P., Roy, M., Mandal, B. P., Dey, G. K., Mukherjee, P. K., Ghatak, J., Tyagi, A. K., & Ale, P. (2008). Nanotechnology, 19, 103–110.Google Scholar
  9. 9.
    Faramarzi, M. A., & Forootanfar, H. (2011). Colloids Surfaces B, 87, 23–27.CrossRefGoogle Scholar
  10. 10.
    Priyadarshini, S., Gopinath, V., Meera, P. N., Mubarak Ali, D., & Velusamy, P. (2013). Colloids Surfaces B, 102, 232–237.CrossRefGoogle Scholar
  11. 11.
    Thomas, R., Viswan, A., Mathew, J., & Radhakrishnan, E. K. (2012). Nano Biomedicine Engineering, 4, 139–143.Google Scholar
  12. 12.
    Shahverdi, A. R., Fakhimi, A., Pharm, D., Hamid, R., Shahverdi, H. R., & Minaian, S. (2007). Nanomedicine: NBM, 3, 168–171.CrossRefGoogle Scholar
  13. 13.
    Dar, M. A., Ingle, A., & Rai, M. (2013). Nanomedicine: NBM, 9, 105–110.CrossRefGoogle Scholar
  14. 14.
    Banu, A., Rathod, V., & Ranganath, E. (2011). Materials Research Bulletin, 46, 1417–1423.CrossRefGoogle Scholar
  15. 15.
    Gajbhiye, M., Kesharwani, J., Ingle, A., Gade, A., & Rai, M. (2009). Nanomedicine, 5, 382–386.CrossRefGoogle Scholar
  16. 16.
    Kalimuthu, K., Deepak, V., Pandiana, S. R. K., Kottaisamy, M., Barath Mani Kantha, S., Kartikeyan, B., & Gurunathan, S. (2010). Colloids Surfaces B, 77, 257–262.CrossRefGoogle Scholar
  17. 17.
    Kalishwaralal, K., BarathManiKanth, S., Pandian, S. R. K., Venkataraman Deepak, V., & Gurunathan, S. (2010). Colloids Surfaces B, 79, 340–344.CrossRefGoogle Scholar
  18. 18.
    Nanda, A., & Saravanan, M. (2009). Nanomedicine, 5, 452–456.CrossRefGoogle Scholar
  19. 19.
    Saravanan, M., Venu, A. K., & Barik, S. K. (2011). Colloids Surfaces B, 88, 325–331.CrossRefGoogle Scholar
  20. 20.
    Fayaz, A. M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, T. K., & Venketesan, R. (2010). Nanomedicine, 6, 103–109.CrossRefGoogle Scholar
  21. 21.
    Das, V.L., Thomas, R., Varghese R.T., Soniya. E.V., Mathew J. and Radhakrishnan E.K. (2013) 3 Biotech. doi:10.1007/s13205-013-0130-8
  22. 22.
    Janardhanan, A., Roshmi, T., Rintu, T. V., Sonia, E. V., Mathew, J., & Radhakrishnan, E. K. (2013). Materials Science-Poland, 31(2), 173–179.CrossRefGoogle Scholar
  23. 23.
    Kannan, N., Mukunthan, K. S., & Balaji, S. (2011). Colloids Surfaces B, 86, 378–383.CrossRefGoogle Scholar
  24. 24.
    Deepak, V., Umamaheshwaran, P. S., Guhan, K., Nanthini, R. A., Krithiga, B., Jaithoon, N. M., & Gurunathan, S. (2011). Colloids Surfaces B, 86(2), 353–358.CrossRefGoogle Scholar
  25. 25.
    Fayaz, M. A., Tiwary, C. S., Kalaichelvan, P. T., & Venkatesan, R. (2009). Colloids Surfaces B, 75, 175–178.CrossRefGoogle Scholar
  26. 26.
    Xie, J., Lee, J. Y., Wang, D. I., & Ting, Y. P. (2007). ACS Nano, 5, 429–439.CrossRefGoogle Scholar
  27. 27.
    Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Colloids Surfaces B, 28, 313–318.CrossRefGoogle Scholar
  28. 28.
    Sadhasivam, S., Shanmugam, P., & Yun, K. (2010). Colloids Surfaces B, 81, 358–362.CrossRefGoogle Scholar
  29. 29.
    Ramamurthy, C. H., Padma, M., Samadanam, I. D., Mareeswaran, R., Suyavaran, A., Kumar, M. S., Premkumar, K., & Thirunavukkarasu, C. (2013). Colloids Surfaces B, 102, 808–815.CrossRefGoogle Scholar
  30. 30.
    Suresh, A., Pelletier, D., Weiwang, J. I., Wonmoon, G. U. B., Mortensen, N., Allison, D. P., Joy, D. C., Phelps, T. J., & Doktycz, A. J. (2010). Environmental Science and Technology, 44, 5210–5215.CrossRefGoogle Scholar
  31. 31.
    Liau, S. Y., Read, D. C., Pugh, W. J., Furr, J. R., & Russell, A. D. (1997). Letters in Applied Microbiology, 25, 279–283.CrossRefGoogle Scholar
  32. 32.
    Nagy, A., Harrison, A., Sabbani, S., Munson, R. S., Dutta, P. K., & Waldman, W. J. (2011). International Journal of Nanomedicine, 6, 1833–1852.Google Scholar
  33. 33.
    Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Nanomedicine: Nanotechnology, Biology and Medicine, 3, 95–101.CrossRefGoogle Scholar
  34. 34.
    Kumar, S. A., Abyaneh, M. K., Gosavi, S. W., Kulkarni, S. K., Pasricha, R., Ahmad, A., & Khan, M. I. (2007). Biotechnological Letters, 29, 439–445.CrossRefGoogle Scholar
  35. 35.
    Prabhu, S., & Poulose, E. K. (2012). International Nano Letters, 2, 32.CrossRefGoogle Scholar
  36. 36.
    Devi, L. S., & Joshi, S. R. (2012). Mycobiology, 40, 27–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Roshmi Thomas
    • 1
  • Aswathi P. Nair
    • 1
  • Soumya KR
    • 1
  • Jyothis Mathew
    • 1
  • Radhakrishnan EK
    • 1
  1. 1.School of BiosciencesMahatma Gandhi UniversityKottayamIndia

Personalised recommendations