Advertisement

Applied Biochemistry and Biotechnology

, Volume 173, Issue 2, pp 333–355 | Cite as

Luminol-Based Chemiluminescent Signals: Clinical and Non-clinical Application and Future Uses

  • Parvez Khan
  • Danish Idrees
  • Michael A. Moxley
  • John A. Corbett
  • Faizan Ahmad
  • Guido von Figura
  • William S. Sly
  • Abdul Waheed
  • Md. Imtaiyaz Hassan
Article

Abstract

Chemiluminescence (CL) is an important method for quantification and analysis of various macromolecules. A wide range of CL agents such as luminol, hydrogen peroxide, fluorescein, dioxetanes and derivatives of oxalate, and acridinium dyes are used according to their biological specificity and utility. This review describes the application of luminol chemiluminescence (LCL) in forensic, biomedical, and clinical sciences. LCL is a very useful detection method due to its selectivity, simplicity, low cost, and high sensitivity. LCL has a dynamic range of applications, including quantification and detection of macro and micromolecules such as proteins, carbohydrates, DNA, and RNA. Luminol-based methods are used in environmental monitoring as biosensors, in the pharmaceutical industry for cellular localization and as biological tracers, and in reporter gene-based assays and several other immunoassays. Here, we also provide information about different compounds that may enhance or inhibit the LCL along with the effect of pH and concentration on LCL. This review covers most of the significant information related to the applications of luminol in different fields.

Keywords

Luminol Chemiluminescence Electrochemiluminescence Cellular localization Reporter gene assay Forensic science 

Notes

Acknowledgments

This work was supported by National Institutes of Health grants DK040163 to W.S.S. and DK52194, DK068839 and AI44458 to J.A.C. We thank Tracey Baird and Shirley Bratcher for the editorial assistance in preparing this manuscript. MIH is thankful to the Indo-US Science and Technology Forum (IUSTF) for the Award of an IUSTF fellowship. PK and DI thank the Indian Council of Medical Research and University Grants commissions, respectively, for the award of fellowship.

Patent information

Waheed et al., Patent NO: US 7674629 B2, Dated: March 9, 2010.

References

  1. 1.
    Barni, F., Lewis, S. W., Berti, A., Miskelly, G. M., & Lago, G. (2007). Talanta, 72(3), 896–913.Google Scholar
  2. 2.
    Isacson, U., & Kowalewska Wettermark, J. G. (1978). Journal of Inorganic and Nuclear Chemistry, 40, 1653–1656. 40, 1653–1656.Google Scholar
  3. 3.
    Haapakka, K. E., Kankare, J. J., & Linke, J. A. (1982). Analytica Chimica Acta, 139, 379–382.Google Scholar
  4. 4.
    Merenyi, G., Lind, J., & Eriksen, T. E. (1990). Journal of Bioluminescence and Chemiluminescence, 5(1), 53–56.Google Scholar
  5. 5.
    Kricka, L. J., & Whitehead, T. P. (1987). Journal of Pharmaceutical and Biomedical Analysis, 5(8), 829–833.Google Scholar
  6. 6.
    Tan, X., & Song, Z. (2014). Applied Biochemistry and Biotechnology, 172(3), 1320–1331.Google Scholar
  7. 7.
    Li, X., Zhang, Z., Tao, L., Li, Y., & Li, Y. Y. (2013). Applied Biochemistry and Biotechnology, 171(1), 63–71.Google Scholar
  8. 8.
    Yu, L., Li, Q., Gai, H., & Wang, Z. (2012). Applied Biochemistry and Biotechnology, 166(3), 786–795.Google Scholar
  9. 9.
    Li, X., Liu, H., He, X., & Song, Z. (2010). Applied Biochemistry and Biotechnology, 160(4), 1065–1073.Google Scholar
  10. 10.
    Xin, T. B., Wang, X., Jin, H., Liang, S. X., Lin, J. M., & Li, Z. J. (2009). Applied Biochemistry and Biotechnology, 158(3), 582–594.Google Scholar
  11. 11.
    Lin, J., Yan, F., & Ju, H. (2004). Applied Biochemistry and Biotechnology, 117(2), 93–102.Google Scholar
  12. 12.
    Francis, P. S., Barnett, N. W., Lewis, S. W., Lim, K. F., (2004). (19), 94–115Google Scholar
  13. 13.
    Wang, T., Xue, B. C., & Liu, E. B. (2008). Guang Pu Xue Yu Guang Pu Fen Xi, 28(5), 1026–1029.Google Scholar
  14. 14.
    White, E. H., Roswell, D. F., (1985). J. G. Burr, ed., , p215.Google Scholar
  15. 15.
    Hui-Chun, Y., & Wann-Yin, L. (2001). Analytica Chimica Acta, 442, 71–77.Google Scholar
  16. 16.
    Yeh, H. C., & Lin, W. Y. (2003). Talanta, 59(5), 1029–1038.Google Scholar
  17. 17.
    Hirayama, O., Takagi, M., Hukumoto, K., & Katoh, S. (1997). Analytical Biochemistry, 247(2), 237–241.Google Scholar
  18. 18.
    Albrecht, H. O. (1928). Chemical., 136, 321–330.Google Scholar
  19. 19.
    Petre, R., & Gheorghe Hubca, G. (2013). U.P.B. Sciences. Bulletin., Series B, 75, 23–34.Google Scholar
  20. 20.
    Zhang, C., Qi, H., & Zhang, M. (2007). Luminescence, 22(1), 53–59.Google Scholar
  21. 21.
    Neupert, W., Oelkers, R., Brune, K., & Geisslinger, G. (1996). Prostaglandins, 52(5), 385–401.Google Scholar
  22. 22.
    Rose, A. L., & Waite, T. D. (2001). Analytical Chemistry, 73(24), 5909–5920.Google Scholar
  23. 23.
    Jiao, T. F., Xing, Y. Y., & Zhou, J. X. (2011). Materials Science Forum, 694, 565–569.Google Scholar
  24. 24.
    Paradies, H. H. (1992). Berichte Der Bunsen-Gesellschaft-Phys. Chemistry Chemical Physics., 96, 1027–1031.Google Scholar
  25. 25.
    Kricka, L. J. (1995). Analytical Chemistry, 67(12), 499R–502R.Google Scholar
  26. 26.
    Isaction, U., (1978). Journal of Inorganic and Nuclear Chemistry, 40, 1653–1656.Google Scholar
  27. 27.
    Barnett, N. W., (2005). Encyclopedia of Analytical Science, Second Edition (pp 511–521). Elsevier: Oxford.Google Scholar
  28. 28.
    White EH, Z. O., Kagi, H. H., & Hill, J. H. M. (1964). Journal of the American Chemical Society, 86, 940–941.Google Scholar
  29. 29.
    Rauhut, M. M., Grayson, M. (1985). New York: third ed., John Wiley and Sons Inc, pp. 247–248.Google Scholar
  30. 30.
    White, E. H., Bursey, M. M. (1964). Journal of the American Chemical Society, 941–942.Google Scholar
  31. 31.
    Roswell, D. F., & White, E. H. (1978). Methods in Enzymology, 57, 409–483.Google Scholar
  32. 32.
    King, R., & Miskelly, G. M. (2005). Talanta, 67(2), 345–353.Google Scholar
  33. 33.
    Larena, A., & Bernabeu, M. V. E. (1983). Optical Pura y Aplicada, 16(2), 91–96.Google Scholar
  34. 34.
    Cui, H., Meng, R., Jiang, H., Sun, Y., & Lin, X. (1999). Luminescence: the Journal of Biological and Chemical Luminescence, 14(3), 175–182.Google Scholar
  35. 35.
    Bottu, G. (1989). Journal of Bioluminescence and Chemiluminescence, 3(2), 59–65.Google Scholar
  36. 36.
    Lindley, P. F. (1996). Reports on Progress in Physics, 59, 867–933.Google Scholar
  37. 37.
    Wilson, R., & Schiffrin, D. J. (1996). Analytical Chemistry, 68(7), 1254–1257.Google Scholar
  38. 38.
    Burgoyne, L. A. (1996). U.S. Patent 5,496,562.Google Scholar
  39. 39.
    Seitz, W. R., & Hercules, D. M. (1972). Analytical Chemistry, 44, 2143–2149.Google Scholar
  40. 40.
    Lin, J. M., Shan, X., Hanaoka, S., & Yamada, M. (2001). Analytical Chemistry, 73(21), 5043–5051.Google Scholar
  41. 41.
    Shen, J., Chen, L., Gao, W., & Zhou, Q. (1998). Lihua Jianyan, Huaxue Fence, 34, 132–134.Google Scholar
  42. 42.
    Seitz, W. R. (1975). The Journal of Physical Chemistry, 79, 101–106.Google Scholar
  43. 43.
    Vorobeva, T. P., et al., (1978). Moscow: Bulletin. Academia. Science. USSR Individual. Chemical Science, 474–478.Google Scholar
  44. 44.
    Lide, D. R., (2000). Boca Raton: CRC Press, (80th ed.), 8–27.Google Scholar
  45. 45.
    Arnhold, J., Mueller, S., Arnold, K., & Grimm, E. (1991). Journal of Bioluminescence and Chemiluminescence, 6(3), 189–192.Google Scholar
  46. 46.
    Francis, P. S., Barnett, N. W., Lewis, S. W., & Lim, K. F. (2004). Luminescence : the Journal of Biological and Chemical Luminescence, 19(2), 94–115.Google Scholar
  47. 47.
    Laux, D. L., James, S., Kish, P. E., & Sutton, T. P. (Eds.) (2005). Boca Raton: CRC Press, pp. 369–389Google Scholar
  48. 48.
    Quickenden, T. I., & Creamer, J. I. (2001). Luminescence : the Journal of Biological and Chemical Luminescence, 16(4), 295–298.Google Scholar
  49. 49.
    Creamer, J. I., Quickenden, T. I., Crichton, L. B., Robertson, P., & Ruhayel, R. A. (2005). Luminescence: the Journal of Biological and Chemical Luminescence, 20(6), 411–413.Google Scholar
  50. 50.
    Cui, H., Shi, M. J., Meng, R., Zhou, J., Lai, C. Z., & Lin, X. Q. (2004). Photochemistry and Photobiology, 79(3), 233–241.Google Scholar
  51. 51.
    Pan, J., Huang, Y., Shu, W., & Cao, J. (2007). Talanta, 71(5), 1861–1866.Google Scholar
  52. 52.
    Yun Luo, Y. L., Baoqiang Lv., Zhou, Z., Xiao, D., & Choi, M. M. F. (2009). Microchim Acta 164, 411–417.Google Scholar
  53. 53.
    Liu, R. H., Jacob, J., & Tennant, B. (1997). BioTechniques, 22(4), 594–595.Google Scholar
  54. 54.
    Vachereau, A. (1989). Analytical Biochemistry, 179(1), 206–208.Google Scholar
  55. 55.
    Zhu, X. L., & Sly, W. S. (1990). The Journal of Biological Chemistry, 265(15), 8795–8801.Google Scholar
  56. 56.
    Chen, H., Gao, F., He, R., & Cui, D. (2007). Journal of Colloid and Interface Science, 315(1), 158–163.Google Scholar
  57. 57.
    Yaoa, H. C. H. C., Yang, X. F., & Lia, H. (2007). Journal of the Chinese Chemical Society, 54, 949–956.Google Scholar
  58. 58.
    Thorpe, G. H., & Kricka, L. J. (1986). Methods in Enzymology, 133, 331–353.Google Scholar
  59. 59.
    Matthews, J. A., Batki, A., Hynds, C., & Kricka, L. J. (1985). Analytical Biochemistry, 151(1), 205–209.Google Scholar
  60. 60.
    Urdea, M. S., Horn, T., Fultz, T. J., Anderson, M., Running, J. A., Hamren, S., Ahle, D., & Chang, C. A. (1991). Nucleic Acids Symposium Series, 24, 197–200.Google Scholar
  61. 61.
    Patolsky, F., Weizmann, Y., Katz, E., & Willner, I. (2003). Angewandte Chemie (International Ed. in English), 42(21), 2372–2376.Google Scholar
  62. 62.
    Dong, H., Wang, C., Xiong, Y., Lu, H., Ju, H., & Zhang, X. (2013). Biosensors & Bioelectronics, 41, 348–353.Google Scholar
  63. 63.
    Lin, Z., Sun, X., Lin, Y., & Chen, G. (2013). The Analyst, 138(8), 2269–2278.Google Scholar
  64. 64.
    Kugimiya, A., Fukada, R., & Funamoto, D., (2013). Analytical biochemistry, 443(1), 22–26.Google Scholar
  65. 65.
    Rongen, H. A., Hoetelmans, R. M., Bult, A., & van Bennekom, W. P. (1994). Journal of Pharmaceutical and Biomedical analysis, 12(4), 433–462.Google Scholar
  66. 66.
    Luppa, P., Bruckner, C., Schwab, I., Hauck, S., Schmidmayr, S., Birkmayer, C., Paulus, B., & Hauptmann, H. (1997). Clinical Chemistry, 43(12), 2345–2352.Google Scholar
  67. 67.
    Satoh, T., Tollerud, D. J., Guevarra, L., Rakue, Y., Nakadate, T., & Kagawa, J. (1995). Arerugi = [Allergy], 44(7), 661–669.Google Scholar
  68. 68.
    Duff, S. E., Li, C., Renehan, A., O'Dwyer, S. T., & Kumar, S. (2003). International Journal of Oncology, 22(2), 339–343.Google Scholar
  69. 69.
    Divi, R. L., Beland, F. A., Fu, P. P., Von Tungeln, L. S., Schoket, B., Camara, J. E., Ghei, M., Rothman, N., Sinha, R., & Poirier, M. C. (2002). Carcinogenesis, 23(12), 2043–2049.Google Scholar
  70. 70.
    Ullman, E. F., Kirakossian, H., Switchenko, A. C., Ishkanian, J., Ericson, M., Wartchow, C. A., Pirio, M., Pease, J., Irvin, B. R., Singh, S., Singh, R., Patel, R., Dafforn, A., Davalian, D., Skold, C., Kurn, N., & Wagner, D. B. (1996). Clinical chemistry, 42(9), 1518–1526.Google Scholar
  71. 71.
    Beaudet, L., Bedard, J., Breton, B., Mercuri, R. J., & Budarf, M. L. (2001). Genome Research, 11(4), 600–608.Google Scholar
  72. 72.
    Zhou, Y., Zhou, T., Zhou, R., & Hu, Y., (2013). Luminescence : the journal of biological and chemical luminescence. doi: 10.1002/bio.2549.
  73. 73.
    Zamburlini, A., Maiorino, M., Barbera, P., Pastorino, A. M., Roveri, A., Cominacini, L., & Ursini, F. (1995). Biochimica et Biophysica acta, 1256(2), 233–240.Google Scholar
  74. 74.
    Mahant, V. K., & Gabardy, R. A. (1994). In Campbell, A. K., Kricka, L. J., Stanley, P. E. (Eds.) Chichester: Wiley, pp. 257.Google Scholar
  75. 75.
    Shkapova, E. A., Kurtasova, L. M., & Savchenko, A. A. (2010). Bulletin of Experimental Biology and Medicine, 149(2), 239–241.Google Scholar
  76. 76.
    Serrano, J. M., & Silva, M. (2006). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 843(1), 20–24.Google Scholar
  77. 77.
    Lundqvist, H., & Dahlgren, C. (1996). Free Radical Biology & Medicine, 20(6), 785–792.Google Scholar
  78. 78.
    Vadrot, N., Ghanem, S., Braut, F., Gavrilescu, L., Pilard, N., Mansouri, A., Moreau, R., & Reyl-Desmars, F. (2012). PLoS One, 7(7), e40879.Google Scholar
  79. 79.
    Adachi, J., Kudo, R., Ueno, Y., Hunter, R., Rajendram, R., Want, E., & Preedy, V. R. (2001). The Journal of Nutrition, 131(11), 2916–2920.Google Scholar
  80. 80.
    Hui, S. P., Murai, T., Yoshimura, T., Chiba, H., Nagasaka, H., & Kurosawa, T. (2005). Lipids, 40(5), 515–522.Google Scholar
  81. 81.
    Hui, S. P., Chiba, H., Sakurai, T., Asakawa, C., Nagasaka, H., Murai, T., Ide, H., & Kurosawa, T. (2007). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 857(1), 158–163.Google Scholar
  82. 82.
    Chai, Y., Tian, D., Wang, W., & Cui, H. (2010). Chemical Communications (Cambridge, England), 46(40), 7560–7562.Google Scholar
  83. 83.
    Zhang, L., Lu, B., & Lu, C. (2013). The Analyst, 138(3), 850–855.Google Scholar
  84. 84.
    Yu, X., Liu, X., Mou, C., Wang, Z., (2012). Luminescence: the journal of biological and chemical luminescence, 28(6), 847–852.Google Scholar
  85. 85.
    Alam, A. M., Kamruzzaman, M., Dang, T. D., Lee, S. H., Kim, Y. H., & Kim, G. M. (2012). Analytical and Bioanalytical Chemistry, 404(10), 3165–3173.Google Scholar
  86. 86.
    Guan, G., Yang, L., Mei, Q., Zhang, K., Zhang, Z., Han, M. Y., Guan, G., Yang, L., Mei, Q., Zhang, K., Zhang, Z., & Han, M. Y. (2012). Analytical Chemistry, 84(21), 9492–9497.Google Scholar
  87. 87.
    Li, J., Li, S., Wei, X., Tao, H., & Pan, H. (2012). Analytical chemistry, 84(22), 9951–9955.Google Scholar
  88. 88.
    Giokas, D. L., Christodouleas, D. C., Vlachou, I., Vlessidis, A. G., & Calokerinos, A. C. (2013). Analytica Chimica Acta, 764, 70–77.Google Scholar
  89. 89.
    Hong, L., Liu, A. L., Li, G. W., Chen, W., & Lin, X. H. (2013). Biosensors & Bioelectronics, 43, 1–5.Google Scholar
  90. 90.
    Zhao, S., & Liu, Y. M. (2013). Methods in Molecular Biology, 919, 79–85.Google Scholar
  91. 91.
    Chen, W., Hong, L., Liu, A. L., Liu, J. Q., Lin, X. H., & Xia, X. H. (2012). Talanta, 99, 643–648.Google Scholar
  92. 92.
    Li, X., Zhang, Z., & Tao, L. (2013). Biosensors & Bioelectronics, 47, 356–360.Google Scholar
  93. 93.
    Xu, S., Zhang, X., Liu, W., Sun, Y., & Zhang, H. (2013). Biosensors & Bioelectronics, 43, 160–164.Google Scholar
  94. 94.
    Zhou, Z. M., Yu, Y., & Zhao, Y. D. (2012). The Analyst, 137(18), 4262–4266.Google Scholar
  95. 95.
    Li, F., & Cui, H. (2013). Biosensors & Bioelectronics, 39(1), 261–267.Google Scholar
  96. 96.
    Zhang, M., Yuan, R., Chai, Y., Chen, S., Zhong, H., Wang, C., & Cheng, Y. (2012). Biosensors & Bioelectronics, 32(1), 288–292.Google Scholar
  97. 97.
    Liu, Q., Wu, J., Tian, J., Zhang, C., Gao, J., Latep, N., Ge, Y., & Qin, W. (2012). Talanta, 97, 193–198.Google Scholar
  98. 98.
    Hao, M., Liu, N., & Ma, Z. (2013). The Analyst, 138(15), 4393–4397.Google Scholar
  99. 99.
    Xiaolan, C., Chuhua, H., Zhifan, Z., & Jianxiu, W. (2013). Biosensors and Bioelectronics, 47, 335–339.Google Scholar
  100. 100.
    Huang, X., & Ren, J. (2011). Analytica Chimica Acta, 686(1–2), 115–120.Google Scholar
  101. 101.
    Cao, Y., Yuan, R., Chai, Y., Liu, H., Liao, Y., & Zhuo, Y. (2013). Talanta, 113, 106–112.Google Scholar
  102. 102.
    Cheng, Y., Yuan, R., Chai, Y., Niu, H., Cao, Y., Liu, H., Bai, L., & Yuan, Y. (2012). Analytica Chimica Acta, 745, 137–142.Google Scholar
  103. 103.
    Fordyce, C. A., Heaphy, C. M., & Griffith, J. K. (2002). BioTechniques, 33(1), 144–146. 148.Google Scholar
  104. 104.
    Vesanen, M., Piiparinen, H., Kallio, A., & Vaheri, A. (1996). Journal of Virological Methods, 59(1–2), 1–11.Google Scholar
  105. 105.
    Demby, A. H., Chamberlain, J., Brown, D. W., & Clegg, C. S. (1994). Journal of Clinical Microbiology, 32(12), 2898–2903.Google Scholar
  106. 106.
    J. U’Ren, J. V. (1994). In A.K. Campbell, L. J. Kricka, P. E. Stanley (Eds.) Chichester: Wiley, pp. 60Google Scholar
  107. 107.
    Bronstein, I., Fortin, J., Stanley, P. E., Stewart, G. S., & Kricka, L. J. (1994). Analytical Biochemistry, 219, 169–181.Google Scholar
  108. 108.
    Bronstein, I., Martin, C. S., Fortin, J. J., Olesen, C. E., & Voyta, J. C. (1996). Clinical Chemistry, 42(9), 1542–1546.Google Scholar
  109. 109.
    Hassan, M. I., Waheed, A., Ahmad, F., & Van Etten, R. L. (2013). Applied Biochemistry and Biotechnology, 170(4), 972–979.Google Scholar
  110. 110.
    Aoki, M., Ono, Y., Kunii, O., & Goldstein, E. (1994). The Journal of Antimicrobial Chemotherapy, 34(3), 383–390.Google Scholar
  111. 111.
    Hawkins, E., & Cumming, R. (1990). The Journal of Histochemistry and Cytochemistry, 38(3), 415–419.Google Scholar
  112. 112.
    Mavri-Damelin, D., Wilden, J., Mani, A. R., Selden, C., Hodgson, H. J., & Damelin, L. H. (2009). Bioconjugate Chemistry, 20(2), 266–273.Google Scholar
  113. 113.
    Tsai, J. J., Yu, L. N., & Wang, S. R. (1992). Zhonghua Minguo Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 25(2), 78–90.Google Scholar
  114. 114.
    Van Dyke, K., & Van Dyke, C. (1986). Methods in Enzymology, 133, 493–507.Google Scholar
  115. 115.
    Saleh, R. A., Agarwal, A., Kandirali, E., Sharma, R. K., Thomas, A. J., Nada, E. A., Evenson, D. P., & Alvarez, J. G. (2002). Fertility and Sterility, 78(6), 1215–1224.Google Scholar
  116. 116.
    Moran, P., Rico, G., Ramiro, M., Olvera, H., Ramos, F., Gonzalez, E., Valadez, A., Curiel, O., Melendro, E. I., & Ximenez, C. (2002). The American Journal of Tropical Medicine and Hygiene, 67(6), 632–635.Google Scholar
  117. 117.
    Braga, P. C., Dal Sasso, M., & Dal Negro, R. (2002). Drugs under Experimental and Clinical Research, 28(4), 133–145.Google Scholar
  118. 118.
    Nosal, R., Drabikova, K., Ciz, M., Lojek, A., Danihelova, E., et al. (2002). Inflammation Research: Official Journal of the European Histamine Research Society, 51(11), 557–562.Google Scholar
  119. 119.
    Marzocchi-Machado, C. M., Alves, C. M., Azzolini, A. E., Polizello, A. C., Carvalho, I. F., & Lucisano-Valim, Y. M. (2002). Lupus, 11(4), 240–248.Google Scholar
  120. 120.
    Huang, Z. H., Hii, C. S., Rathjen, D. A., Poulos, A., Murray, A. W., & Ferrante, A. (1997). The Biochemical Journal, 325(Pt 2), 553–557.Google Scholar
  121. 121.
    Braun, J. M., Gemmell, C. G., Beuth, J., Ko, H. L., & Pulverer, G. (1995). Zentralblatt fur Bakteriologie: International Journal of Medical Microbiology, 283(1), 90–94.Google Scholar
  122. 122.
    Chettibi, S., Lawrence, A. J., Stevenson, R. D., & Young, J. D. (1994). FEMS immunology and Medical Microbiology, 8(3), 271–281.Google Scholar
  123. 123.
    Hansen, P. S., Petersen, S. B., Varning, K., & Nielsen, H. (2002). Scandinavian Journal of Gastroenterology, 37(7), 765–771.Google Scholar
  124. 124.
    Moriwaki, Y., Sugiyama, M., Ozawa, Y., Mochizuki, Y., Kunisaki, C., Kamiya, N., Yamazaki, Y., & Suda, T. (2002). World Journal of Surgery, 26(5), 521–526.Google Scholar
  125. 125.
    Tseng, J. C., & Kung, A. L. (2012). Chemistry & Biology, 19(9), 1199–1209.Google Scholar
  126. 126.
    Muller, C. H., Lee, T. K., & Montano, M. A. (2013). Methods in Molecular Biology, 927, 363–376.Google Scholar
  127. 127.
    Towbin, H., Staehelin, T., & Gordon, J. (1979). Proceedings of the National Academy of Sciences of the United States of America, 76(9), 4350–4354.Google Scholar
  128. 128.
    Bonapace, G., Waheed, A., Shah, G. N., & Sly, W. S. (2004). Proceedings of the National Academy of Sciences of the United States of America, 101(33), 12300–12305.Google Scholar
  129. 129.
    Waheed, A., Zhu, X. L., & Sly, W. S. (1992). The Journal of Biological Chemistry, 267(5), 3308–3311.Google Scholar
  130. 130.
    Khan, I., Siddique, I., Al-Awadi, F. M., & Mohan, K. (2003). Canadian journal of gastroenterology = Journal canadien de gastroenterologie, 17(1), 31–36.Google Scholar
  131. 131.
    Guo Fang, Z. H. C. (2000). Analytica Chimica Acta, 409, 75–81.Google Scholar
  132. 132.
    Afsaneh, S. M. A. K. (2002). Analytica Chimica Acta, 468, 53–63.Google Scholar
  133. 133.
    Xiaoyu Liu, A. L., Zhou, B., Qiu, C., & Ren, H. (2009). Chemistry Central Journal, 3, 7.Google Scholar
  134. 134.
    Yaqoob, M., Folgado Biot, B., Nabi, A., & Worsfold, P. J. (2012). Luminescence: the Journal of Biological and Chemical Luminescence, 27(5), 419–425.Google Scholar
  135. 135.
    Serrano, J. M., & Silva, M. (2006). Journal of Chromatography A, 1117(2), 176–183.Google Scholar
  136. 136.
    Wang, F., Orbach, R., & Willner, I. (2012). Chemistry, 18(50), 16030–16036.Google Scholar
  137. 137.
    Yang, X. A., Zhang, W. B., (2013). Luminescence: the journal of biological and chemical luminescence, 28(5), 641–647.Google Scholar
  138. 138.
    Chen, Y. C., Jian, Y. L., Chiu, K. H., & Yak, H. K. (2012). Analytical Sciences, 28(8), 795–799.Google Scholar
  139. 139.
    Motsenbocker, M., Sugawara, T., Shintani, M., Masuya, H., Ichimori, Y., & Kondo, K. (1993). Analytical Chemistry, 65, 403–408.Google Scholar
  140. 140.
    Kikuchi, K., Nagano, T., Hayakawa, H., Hirata, Y., & Hirobe, M. (1993). Analytical Chemistry, 65(13), 1794–1799.Google Scholar
  141. 141.
    Whitehead, T. P., Thorpe, G. H. G., & Maxwell, S. R. J. (1992). Analytica Chimica Acta, 266, 265–277.Google Scholar
  142. 142.
    Yamaguchi, M., Yoshida, H., & Nohta, H. (2002). Journal of Chromatography A, 950(1–2), 1–19.Google Scholar
  143. 143.
    Zhu, R., & Kok, W. T. (1998). Journal of Pharmaceutical and Biomedical Analysis, 17(6–7), 985–999.Google Scholar
  144. 144.
    Fletcher, P., Andrew, K. N., Calokerinos, A. C., Forbes, S., & Worsfold, P. J. (2001). Luminescence: the Journal of Biological and Chemical Luminescence, 16(1), 1–23.Google Scholar
  145. 145.
    Felmlee, T. A., Mitchell, P. S., Ulfelder, K. J., Persing, D. H., & Landers, J. P. (1995). Journal. Capital. Electron., 2, 125–130.Google Scholar
  146. 146.
    Miyazawa, T., Suzuki, T., Fujimoto, K., & Kinoshita, M. (1996). Mechanisms of Ageing and Development, 86(3), 145–150.Google Scholar
  147. 147.
    Lin, Z., Wang, H., Xu, Y., Dong, J., Hashi, Y., & Chen, S. (2012). Food Chemistry, 134(2), 1181–1191.Google Scholar
  148. 148.
    Fall, B. I., Eberlein-Konig, B., Behrendt, H., Niessner, R., Ring, J., & Weller, M. G. (2003). Analytical Chemistry, 75(3), 556–562.Google Scholar
  149. 149.
    Kricka, L. J. (2002). Annals of Clinical Biochemistry, 39(Pt 2), 114–129.Google Scholar
  150. 150.
    Cheek, B. J., Steel, A. B., Torres, M. P., Yu, Y. Y., & Yang, H. (2001). Analytical Chemistry, 73(24), 5777–5783.Google Scholar
  151. 151.
    Huang, R. P. (2001). Journal of Immunological Methods, 255(1–2), 1–13.Google Scholar
  152. 152.
    Roda, A., Guardigli, M., Russo, C., Pasini, P., & Baraldini, M. (2000). BioTechniques, 28(3), 492–496.Google Scholar
  153. 153.
    Huang, R. P., Huang, R., Fan, Y., & Lin, Y. (2001). Analytical Biochemistry, 294(1), 55–62.Google Scholar
  154. 154.
    Beck, M. T., Holle, L., & Chen, W. Y. (2001). BioTechniques, 31(4), 782–784. 786.Google Scholar
  155. 155.
    Creton, R., & Jaffe, L. F. (2001). BioTechniques, 31(5), 1098–1100.Google Scholar
  156. 156.
    Pasini, P., Musiani, M., Russo, C., Valenti, P., Aicardi, G., Crabtree, J. E., Baraldini, M., & Roda, A. (1998). Journal of Pharmaceutical and Biomedical Analysis, 18(4–5), 555–564.Google Scholar
  157. 157.
    Xu, H., Ye, H., Zhu, X., Liang, S., Guo, L., Lin, Z., Liu, X., & Chen, G. (2013). The Analyst, 138(1), 234–239.Google Scholar
  158. 158.
    Fregeau, C. J., Germain, O., & Fourney, R. M. (2000). Journal of Forensic Sciences, 45(2), 354–380.Google Scholar
  159. 159.
    Lytle, L. T., & Hedgecock, D. G. (1978). Journal of Forensic Sciences, 23(3), 550–562.Google Scholar
  160. 160.
    Pex, O. J., (2005). International Association. Bloodstain Pattern Analysis. Newslett., pp. 11–15.Google Scholar
  161. 161.
    Budowle, B., Leggitt, J. L., Defenbaugh, D. A., Keys, K. M., & Malkiewicz, S. F. (2000). Journal of Forensic Sciences, 45(5), 1090–1092.Google Scholar
  162. 162.
    Vandenberg, N., & van Oorschot, R. A. (2006). Journal of Forensic Sciences, 51(2), 361–370.Google Scholar
  163. 163.
    Webb, J. L., Creamer, J. I., & Quickenden, T. I. (2006). Luminescence: the Journal of Biological and Chemical Luminescence, 21(4), 214–220.Google Scholar
  164. 164.
    Thornton, J. I., & Maloney, R. S., (1985). Calif. Assoc. Crim. Newslett., pp. 9–16Google Scholar
  165. 165.
    Lefebvre, G., (2005). International Association. Bloodstain Pattern Analysis. Newsletter, pp. 4–7.Google Scholar
  166. 166.
    Liu, M., Li, B., & Cui, X. (2013). Biosensors & Bioelectronics, 47, 26–31.Google Scholar
  167. 167.
    Shao, X., Li, Y., Li, F., Liu, Y., & Song, Z. (2011). Journal of AOAC International, 94(5), 1461–1466.Google Scholar
  168. 168.
    Sun, H., Wang, J., & Wang, T., (2013). Luminescence: the journal of biological and chemical luminescence, 28(4), 592–596.Google Scholar
  169. 169.
    Hu, Y., Li, G., & Zhang, Z. (2011). Luminescence: the Journal of Biological and Chemical Luminescence, 26(5), 313–318.Google Scholar
  170. 170.
    Khan, M. N., Jan, M. R., Shah, J., Lee, S. H., & Kim, Y. H., (2013). Luminescence: the journal of biological and chemical luminescence, 28(6), 915–21.Google Scholar
  171. 171.
    Liu, Y., Fu, Z., & Wang, L. (2011). Luminescence: the Journal of Biological and Chemical Luminescence, 26(6), 397–402.Google Scholar
  172. 172.
    Nie, F., Bu, M., Wu, L., & Zheng, J., (2014). Luminescence: the journal of biological and chemical luminescence, 29(2), 147–50.Google Scholar
  173. 173.
    Elgawish, M. S., Shimomai, C., Kishikawa, N., Ohyama, K., Nakashima, K., & Kuroda, N. (2012). The Analyst, 137(20), 4802–4808.Google Scholar
  174. 174.
    Kamruzzaman, M., Alam, A. M., Kim, K. M., Lee, S. H., Kim, Y. H., Kabir, A. N., Kim, G. M., & Dang, T. D. (2013). Biomedical Microdevices, 15(1), 195–202.Google Scholar
  175. 175.
    Yoshida, H., Nakao, R., Matsuo, T., Nohta, H., & Yamaguchi, M. (2001). Journal of Chromatography A, 907(1–2), 39–46.Google Scholar
  176. 176.
    Chen, F., Zhang, Z., Zhang, Y., & He, D. (2005). Analytical and Bioanalytical Chemistry, 382, 211.Google Scholar
  177. 177.
    Qiao, M., Guo, X., & Li, F. (2002). Journal of Chromatography A, 952(1–2), 131–138.Google Scholar
  178. 178.
    Li, F., Guo, X., Qiao, M., Xiong, Z., & Zhou, D. (2004). Se Pu, 22(4), 349–353.Google Scholar
  179. 179.
    Zang, D., Yan, M., Zhao, P., Ge, L., Liu, S., & Yu, J. (2012). The Analyst, 137(18), 4247–4253.Google Scholar
  180. 180.
    Fu-Nan Chen, Y.-X. Z., & Zhang, Z.-J. (2007). Chinese Journal of Chemistry, 25(7), 942–947.Google Scholar
  181. 181.
    Nalewajko, E., Wiszowata, A., & Kojlo, A. (2007). Journal of Pharmaceutical and Biomedical Analysis, 43(5), 1673–1681.Google Scholar
  182. 182.
    Yakabe, T., Ishida, J., Yoshida, H., Nohta, H., & Yamaguchi, M. (2000). Analytical Sciences, 16, 545.Google Scholar
  183. 183.
    Li, T., Wang, Z., Xie, H., & Fu, Z. (2012). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 911, 1–5.Google Scholar
  184. 184.
    Neuvonen, H. (1994). Journal of the Chemical Society, Perkin Transactions, 2, 89–95.Google Scholar
  185. 185.
    Wang, C., Xiao, R., Dong, P., Wu, X., Rong, Z., Xin, L., Tang, J., & Wang, S. (2014). Biosensors & Bioelectronics, 57C, 36–40.Google Scholar
  186. 186.
    Zhang, Y., Pang, L., Ma, C., Tu, Q., Zhang, R., Saeed, E., Mahmoud, A. E., & Wang, J., (2014). Analysis Chemistry, 86(6), 3092–3099.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Parvez Khan
    • 1
  • Danish Idrees
    • 1
  • Michael A. Moxley
    • 2
  • John A. Corbett
    • 3
  • Faizan Ahmad
    • 1
  • Guido von Figura
    • 4
  • William S. Sly
    • 2
  • Abdul Waheed
    • 2
  • Md. Imtaiyaz Hassan
    • 1
  1. 1.Centre for Interdisciplinary Research in Basic SciencesJamia Millia IslamiaNew DelhiIndia
  2. 2.Edward A. Doisy Department of Biochemistry and Molecular BiologySaint Louis University School of MedicineSt. LouisUSA
  3. 3.Department of BiochemistryMedical College of WisconsinMilwaukeeUSA
  4. 4.Department of Internal Medicine, Klinikum Rechts der IsarTechnical University of MunichMunichGermany

Personalised recommendations