Advertisement

Applied Biochemistry and Biotechnology

, Volume 173, Issue 5, pp 1250–1262 | Cite as

Molecularly Imprinted Supermacroporous Cryogels for Myoglobin Recognition

  • Gizem Ertürk
  • Nilay Bereli
  • Pramod W. Ramteke
  • Adil DenizliEmail author
Article

Abstract

Myoglobin is a primary iron, and oxygen-binding protein of muscle tissues and levels can be an important diagnostic biomarker for acute myocardial infarction, myocardial necrosis, or other cardiac diseases. The establishment of myoglobin recognition systems is important because of its protein’s structural and functional values in physiology, biochemistry, and diagnostic value in some damaged muscle tissue and cardiac diseases. For this purpose, we used molecular imprinting technique for myoglobin recognition from aqueous solutions and human plasma. In the first step, myoglobin-imprinted poly(hydroxyethyl methacrylate) (PHEMA) cryogels (MGb-MIP) were prepared, and optimum myoglobin adsorption conditions were determined. Selectivity experiments have been done with the competitive proteins, and myoglobin adsorption from IgG and albumin-free human plasma was studied. The purity of the desorbed samples was determined with SDS-PAGE. The desorption efficiency and reusability of the MGb-MIP cryogels were tested, and it was shown that without any significant loss in the adsorption capacity, MGb-MIP cryogels can be used a number of times for myoglobin recognition and separation.

Keywords

Myoglobin Acute myocardial infarction Myocardial necrosis Molecular imprinting Cryogels 

References

  1. 1.
    Shihabi, Z. K. (1999). In S. M. Palfrey (Ed.), Clinical applications of capillary electrophoresis (pp. 53–57). New York: Humana.CrossRefGoogle Scholar
  2. 2.
    Wu, A. H. (2005). Scandinavian Journal of Clinical and Laboratory Investigation Supplement, 240, 112–121.Google Scholar
  3. 3.
    Rozenman, Y., & Gotsman, M. S. (1994). Annual Review of Medicine, 45, 31–44.CrossRefGoogle Scholar
  4. 4.
    Murphy, M. J., & Berding, C. B. (1999). Critical Care Nurse, 19, 58–66.Google Scholar
  5. 5.
    Adams, J. E., & Miracle, V. A. (1998). American Journal of Critical Care, 6, 418–423.Google Scholar
  6. 6.
    Montague, C., & Kircher, T. (1995). American Journal of Clinical Pathology, 4, 472–476.Google Scholar
  7. 7.
    Lin, H., Rick, J., & Chou, T. (2007). Biosensors and Bioelectronics, 22, 3293–3301.CrossRefGoogle Scholar
  8. 8.
    Powell, S. C., Friedlander, E. R., & Shihabi, Z. K. (1984). Journal of Chromatography, 28, 87–92.CrossRefGoogle Scholar
  9. 9.
    Han, D., McMillin, K. W., & Godber, J. S. (1994). Journal of Food Science, 59, 1279–1282.CrossRefGoogle Scholar
  10. 10.
    Kelner, M. J., & Alexander, N. M. (1985). Clinical Chemistry, 31, 112–114.Google Scholar
  11. 11.
    Schuder, S., Wittenberg, J. B., Haseltine, B., & Wittenberg, B. A. (1979). Analytical Biochemistry, 92, 473–481.CrossRefGoogle Scholar
  12. 12.
    Modi, S., Shedbalkar, V. P., & Behere, D. V. (1989). Indian Journal of Biochemistry and Biophysics, 26, 84–86.Google Scholar
  13. 13.
    Boesken, W. H., Boesken, S., & Mamier, A. (1977). Experimental Medicine, 171, 71–78.CrossRefGoogle Scholar
  14. 14.
    Shiomi, T., Matsui, M., Mizukami, F., & Sakaguchi, K. (2005). Biomaterials, 27, 5564–5571.CrossRefGoogle Scholar
  15. 15.
    Rao, T. P., Daniel, S., & Gladis, J. M. (2004). Trends in Analytical Chemistry, 23, 28–35.CrossRefGoogle Scholar
  16. 16.
    Mosbach, K., & Ramström, O. (1996). Nature Biotechnology, 14, 163–170.CrossRefGoogle Scholar
  17. 17.
    Haupt, K., & Mosbach, K. (1998). Tibtech, 16, 468–475.CrossRefGoogle Scholar
  18. 18.
    Kryscio, D. R., & Peppas, A. N. (2012). Analytica Chimica Acta, 718, 109–115.CrossRefGoogle Scholar
  19. 19.
    Moreira, F. T. C., Kamel, A. H., Guerreiro, J. R. L., & Sales, F. G. M. (2010). Biosensors and Bioelectronics, 26, 566–574.CrossRefGoogle Scholar
  20. 20.
    Bereli, N., Andaç, M., Baydemir, G., Say, R., Galaev, I. Y., & Denizli, A. (2008). Journal of Chromatography A, 1190, 18–26.CrossRefGoogle Scholar
  21. 21.
    Ertürk, G., Uzun, L., Tümer, M. A., Say, R., & Denizli, A. (2011). Biosensors and Bioelectronics, 28, 97–104.CrossRefGoogle Scholar
  22. 22.
    Şener, G., Uzun, L., Say, R., & Denizli, A. (2011). Sensors and Actuators B, 160, 791–799.CrossRefGoogle Scholar
  23. 23.
    Uzun, L., Say, R., Ünal, S., & Denizli, A. (2009). Journal of Chromatography B, 877, 181–188.CrossRefGoogle Scholar
  24. 24.
    Uzun, L., Say, R., Ünal, S., & Denizli, A. (2009). Biosensors and Bioelectronics, 24, 2878–2884.CrossRefGoogle Scholar
  25. 25.
    Ge, Y., & Turner, A. P. F. (2009). Chemistry - A European Journal, 15, 8100–8107.CrossRefGoogle Scholar
  26. 26.
    Türkoğlu, E. A., Yavuz, H., Uzun, L., Akgöl, S., & Denizli, A. (2013). Artificial Cells Nanomedicine, 41, 213–221.CrossRefGoogle Scholar
  27. 27.
    Osman, B., Uzun, L., Beşirli, N., & Denizli, A. (2013). Materials Science and Engineering C, 33, 3609–3614.CrossRefGoogle Scholar
  28. 28.
    Kryscio, D. R., & Peppas, N. A. (2012). Acta Biomaterialia, 8, 461–473.CrossRefGoogle Scholar
  29. 29.
    Hansen, D. E. (2007). Biomaterialia, 28, 4178–4191.CrossRefGoogle Scholar
  30. 30.
    Tamahkar, E., Bereli, N., Say, R., & Denizli, A. (2011). Journal of Separation Science, 34, 3433–3440.CrossRefGoogle Scholar
  31. 31.
    Andaç, M., Galaev, I. Y., & Denizli, A. (2013). Colloids and Surfaces B, 109, 259–265.CrossRefGoogle Scholar
  32. 32.
    Derazshamshir, A., Baydemir, G., Andaç, M., Say, R., Galaev, I. Y., & Denizli, A. (2010). Macromolecular Chemistry and Physics, 211, 657–668.CrossRefGoogle Scholar
  33. 33.
    Bereli, N., Ertürk, G., & Denizli, A. (2012). Separation Science and Technology, 47, 1813–1820.CrossRefGoogle Scholar
  34. 34.
    Kumar, A., Plieva, F. M., Galaev, I. Y., & Mattiasson, B. (2003). Journal of Immunological Methods, 283, 185–194.CrossRefGoogle Scholar
  35. 35.
    Ertürk, G., Bereli, N., Tümer, M. A., Say, R., & Denizli, A. (2013). Journal of Molecular Recognition, 26, 633–642.CrossRefGoogle Scholar
  36. 36.
    Baydemir, G., Bereli, N., Andaç, M., Say, R., Galaev, I. Y., & Denizli, A. (2009). Colloids and Surfaces B, 68, 33–38.CrossRefGoogle Scholar
  37. 37.
    Lozinsky, V. I., Galaev, I. Y., Plieva, F. M., Savina, I. N., Jungvid, H., & Mattiasson, B. (2003). Trends in Biotechnology, 21, 445–451.CrossRefGoogle Scholar
  38. 38.
    Aslıyüce, S., Uzun, L., Say, R., & Denizli, A. (2013). Reactive and Functional Polymers, 73, 813–820.CrossRefGoogle Scholar
  39. 39.
    Altıntaş, E. B., & Denizli, A. (2009). Materials Science and Engineering C, 29, 1627–1634.CrossRefGoogle Scholar
  40. 40.
    Arakawa, T., & Timasheff, S. N. (1984). Biochemistry, 23, 5912–5923.CrossRefGoogle Scholar
  41. 41.
    Yıldırım, E., Turan, E., & Çaykara, T. (2012). Journal of Materials Chemistry, 22, 636–642.CrossRefGoogle Scholar
  42. 42.
    Moreira, F. T. C., Dutra, R. A. F., Noronha, J. P. C., & Sales, M. G. F. (2013). Electrochimica Acta, 107, 481–487.Google Scholar
  43. 43.
    Moreira, F. T. C., Dutra, R. A. F., Noronha, J. P. C., & Sales, M. G. F. (2011). Biosensors and Bioelectronics, 26, 4760–4766.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Gizem Ertürk
    • 1
  • Nilay Bereli
    • 2
  • Pramod W. Ramteke
    • 3
  • Adil Denizli
    • 2
    Email author
  1. 1.Department of BiologyHacettepe UniversityAnkaraTurkey
  2. 2.Department of ChemistryHacettepe UniversityAnkaraTurkey
  3. 3.Department of BiotechnologyAllahabad Agricultural Deemed UniversityAllahabadIndia

Personalised recommendations