Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 6, pp 3271–3286 | Cite as

Synthesis and Characterization of the Magnetic Molecularly Imprinted Polymer Nanoparticles Using N, N-bis Methacryloyl Ethylenediamine as a New Cross-linking Agent for Controlled Release of Meloxicam

  • Saman Azodi-Deilami
  • Majid Abdouss
  • Davood Kordestani
Article

Abstract

The novel magnetic molecularly imprinted polymers (MMIPs) had been synthesized using N,N-bis methacryloyl ethylenediamine as a cross-linker for the controlled release of meloxicam at a pH of 1.0 (simulated gastric fluid), at a pH of 6.8 (simulated intestinal fluid) and at a pH of 7.4 (simulated biological fluids). The MMIPs were prepared via precipitation polymerization, using Fe3O4 as a magnetic component, meloxicam as a template molecule, methacrylic acid (MAA) as a functional monomer and N,N-bis methacryloyl ethylenediamine as a new cross-linker in acetonitrile/dimethyl sulfoxide porogen. Magnetic non-molecularly imprinted polymers (MNIPs) were also prepared with the same synthesis procedure as with MMIPs only without the presence of the template. The obtained MMIPs were characterized using transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR), dynamic light scattering (DLS), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). The performance of the MMIPs for the controlled release of meloxicam was assessed, and the results indicated that the magnetic MIPs also had potential applications in drug controlled release.

Keywords

Magnetic molecularly imprinted polymers Nanoparticles Cross-linking agent Controlled release Meloxicam 

Notes

Acknowledgments

The authors wish to express their gratitude to the Amirkabir University of Technology for their support in carrying out this project. We would also like to thank Dr. Alireza Hasani and Dr. Ebadullah Asadi and other co-workers in the nano lab of Amirkabir University of Technology for their kind help.

References

  1. 1.
    Owens, P. K., Karlsson, L., Lutz, E. S. M., & Andersson, L. I. (1999). Trends Anal Chem, 18, 146–154.CrossRefGoogle Scholar
  2. 2.
    Ho, K. C., Yeh, W. M., Tung, T. S., & Liao, J. Y. (2005). J Anal Chim Acta, 542, 90–96.CrossRefGoogle Scholar
  3. 3.
    Greene, N. T., & Shimizu, K. D. (2005). J Am Chem Soc, 127, 5695–5700.CrossRefGoogle Scholar
  4. 4.
    Vallano, P. T., & Remcho, V. T. (2000). J Chromatogr A, 887, 125–135.CrossRefGoogle Scholar
  5. 5.
    Kamal, A., Kumar, B. A., Arifuddin, M., & Dastidar, S. G. (2003). Bioorg Med Chem, 11, 5135–5142.CrossRefGoogle Scholar
  6. 6.
    Abdouss, M., Azodi-Deilami, S., Asadi, E., & Shariatinia, Z. (2012). J Mater Sci Mater Med, 23, 1543–1552.CrossRefGoogle Scholar
  7. 7.
    Chen, W., Han, D. K., Ahn, K. D., & Kim, J. M. (2002). Macromol Res, 10, 122–126.CrossRefGoogle Scholar
  8. 8.
    Suedee, R., Srichana, T., & Martin, G. (2000). J Control Release, 66, 135–147.CrossRefGoogle Scholar
  9. 9.
    Sambe, H., Hoshina, K., Moadel, R., Wainer, W., & Haginaka, J. (2006). J Chromatogr A, 1134, 88–94.CrossRefGoogle Scholar
  10. 10.
    Asadi, E., Azodi-Deilami, S., Abdouss, M., & Khaghani, S. (2012). Appl Biochem Biotechnol, 167, 2076–2087.CrossRefGoogle Scholar
  11. 11.
    Azodi-Deilami, S., Abdouss, M., & Javanbakht, M. (2011). Appl Biochem Biotechnol, 164, 133–147.CrossRefGoogle Scholar
  12. 12.
    Abdouss, M., Azodi-Deilami, S., Asadi, E., & Shariatinia, Z. (2012). J Mater Sci Mater Med, 23, 1543–1552.CrossRefGoogle Scholar
  13. 13.
    Lu, A. H., Salabas, E. L., & Schüth, F. (2007). Angewandte Chemie International Edition, 46, 1222–1244.CrossRefGoogle Scholar
  14. 14.
    Li, Y., Yin, X. F., Chen, F. R., Yang, H. H., Zhuang, Z. X., & Wang, X. R. (2006). Macromolecules, 39, 4497–4499.CrossRefGoogle Scholar
  15. 15.
    Tan, C. J., Chua, H. G., Ker, K. H., & Tong, Y. W. (2008). Analytical Chemistry, 80, 683–692.CrossRefGoogle Scholar
  16. 16.
    Jin, G., Li, W., Yu, S., Peng, Y., & Kong, J. (2008). Analyst, 133, 1367–1372.CrossRefGoogle Scholar
  17. 17.
    Wang, X., Wang, L., He, X., Zhang, Y., & Chen, L. (2009). Talanta, 78, 327–332.CrossRefGoogle Scholar
  18. 18.
    Lu, C. H., Wang, Y., Li, Y., Yang, H. H., Chen, X., & Wang, X. R. (2009). J Mater Chem, 19, 1077–1079.CrossRefGoogle Scholar
  19. 19.
    Chen, L., Zhang, X., Sun, L., Xu, Y., Zeng, Q., Wang, H., Xu, H., Yu, A., Zhang, H., & Ding, L. (2009). J Agric Food Chem, 57, 10073–10080.CrossRefGoogle Scholar
  20. 20.
    Zhang, Y., Liu, R., Hu, Y., & Li, G. (2009). Analytical Chemistry, 81, 967–976.CrossRefGoogle Scholar
  21. 21.
    Chung-gi, S., Kazzuo, O., Masashi, S., & Yutaka, N. (1998). J Phys Chem A, 102, 2572–2578.CrossRefGoogle Scholar
  22. 22.
    Masahiro, A., Tatsuo, O., Yoshiko, I., Kazutenu, Y., Kazuo, F., & Haruo, S. (1991). Tetrahedron Lett, 32, 217–220.CrossRefGoogle Scholar
  23. 23.
    Masahiro, A., Tatsuo, O., Yoshiko, I., Kazutenu, Y., Kazuo, F., & Haruo, S. (1991). Tetrahedron Lett, 32, 221–224.CrossRefGoogle Scholar
  24. 24.
    El-Sawy, N. M., & Elassar, A. Z. A. (1998). Eur Polym J, 34, 1073–1080.CrossRefGoogle Scholar
  25. 25.
    Rivas, B. L., & Seguel, G. V. (1999). Polyhedron, 18, 2511–2518.CrossRefGoogle Scholar
  26. 26.
    Elassar, A. Z. A., & El-Sawy, N. M. (2005). J Appl Polym Sci, 95, 1189–1197.CrossRefGoogle Scholar
  27. 27.
    Jeragh, B. J. A., Elassar, A. Z. A., & El-Dissouky, A. (2005). J Appl Polym Sci, 96, 1839–1846.CrossRefGoogle Scholar
  28. 28.
    Lu, Q., Singh, A., Deochamps, J. R., & Chang, E. L. (2000). Inorg Chim Acta, 309, 82–90.CrossRefGoogle Scholar
  29. 29.
    Diab, A. M., El-Sonbati, A. Z., & El-Dissouky, A. (1989). Eur Polym J, 25, 431–434.CrossRefGoogle Scholar
  30. 30.
    Gad, A. M., El-Dissouky, A., & Abdel-Alim, W. (1995). Polym Degrad Stab, 50, 163–167.CrossRefGoogle Scholar
  31. 31.
    El-Sonbati, A. Z., El-Dissouky, A., & Diab, M. M. (1989). Acta Polym, 40, 112–116.CrossRefGoogle Scholar
  32. 32.
    Wang, J., Chen, L., & Luo, D. B. (1997). Anal Commun, 34, 217–220.CrossRefGoogle Scholar
  33. 33.
    Ismail, K. Z., Shehata, A. K., & El-Dissouky, A. (1997). Polyhedron, 16, 2909–2916.CrossRefGoogle Scholar
  34. 34.
    Akilah, A., & Moet, A. (1990). Functionalized polymers and their applications. London: Chapman & Hall.Google Scholar
  35. 35.
    Yang, D., Hu, J., Fu, S. (2009) J Phys Chem C 113, 7646-7651.Google Scholar
  36. 36.
    Stöber, W., Fink, A., & Bohn, E. J. (1968). J Colloid Interface Sci, 26, 62–69.CrossRefGoogle Scholar
  37. 37.
    Sun, H., Hong, J., Meng, F., Gong, P., Yu, J., Xue, Y., Zhao, S., Xu, D., Dong, L., & Yao, S. (2006). Surf Coat Technol, 201, 250–254.CrossRefGoogle Scholar
  38. 38.
    Ding, Y., Hu, Y., Zhang, L., Chen, Y., & Jiang, X. (2006). Biomacromolecules, 7, 1766–1772.CrossRefGoogle Scholar
  39. 39.
    Ciardelli, G., Cioni, B., Cristallini, C., Barbani, N., Silvestri, D., & Giusti, P. (2004). Biosens Bioelectron, 20, 1083–1090.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Saman Azodi-Deilami
    • 1
  • Majid Abdouss
    • 1
  • Davood Kordestani
    • 2
  1. 1.Department of ChemistryAmirkabir University of TechnologyTehranIran
  2. 2.Faculty of Chemistry, Department of Organic ChemistryRazi UniversityKermanshahIran

Personalised recommendations