Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 5, pp 2465–2479 | Cite as

Preparation, Characterization, and In Vitro Biological Evaluation of PLGA/Nano-Fluorohydroxyapatite (FHA) Microsphere-Sintered Scaffolds for Biomedical Applications

  • Mohammadreza Tahriri
  • Fathollah Moztarzadeh
Article

Abstract

In this research, the novel three-dimensional (3D) porous scaffolds made of poly(lactic-co-glycolic acid) (PLGA)/nano-fluorohydroxyapatite (FHA) composite microspheres was prepared and characterize for potential bone repair applications. We employed a microsphere sintering method to produce 3D PLGA/nano-FHA scaffolds composite microspheres. The mechanical properties, pore size, and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLGA/nano-FHA ratio. The experimental results showed that the PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, MTT assay and alkaline phosphatase activity (ALP activity) results ascertained that a general trend of increasing in cell viability was seen for PLGA/nano-FHA (4:1) scaffold sintered at 90 °C for 2 h by time with compared to control group. Eventually, obtained experimental results demonstrated PLGA/nano-FHA microsphere-sintered scaffold deserve attention utilizing for bone tissue engineering.

Keywords

PLGA FHA Microsphere Sintering Scaffold 

References

  1. 1.
    Langer, P., & Vacanti, J. P. (1993). Science, 260, 920.CrossRefGoogle Scholar
  2. 2.
    Nerem, R. M., & Sambanis, A. (1995). Tissue Engineering, 1, 3.CrossRefGoogle Scholar
  3. 3.
    Boyan, B. D., Lohmann, C. H., Romero, J., & Schwartz, Z. (1999). Clinics in Plastic Surgery, 26, 629.Google Scholar
  4. 4.
    Persidis, A. (1999). Nature Biotechnology, 17, 508.CrossRefGoogle Scholar
  5. 5.
    Chapekar, M. S. (2000). Journal of Biomedical Materials Research, 53, 617.CrossRefGoogle Scholar
  6. 6.
    Hudson, T. W., Evans, R. G., & Schmidt, C. E. (2000). The Orthopedic Clinics of North America, 31, 485.CrossRefGoogle Scholar
  7. 7.
    Sweigart, M. A., & Athanasiou, K. A. (2001). Tissue Engineering, 7, 111.CrossRefGoogle Scholar
  8. 8.
    Chen, G., Ushida, T., & Tateishi, T. (2002). Macromolecular Bioscience, 2, 67.CrossRefGoogle Scholar
  9. 9.
    Williams, D. (2004). Materials Today, 7, 24.CrossRefGoogle Scholar
  10. 10.
    Shin, H., Jo, S., & Mikos, A. G. (2004). Biomaterials, 24, 4353.CrossRefGoogle Scholar
  11. 11.
    Aboudzadeh, N., Imani, M., Shokrgozar, M. A., Khavandi, A., Javadpour, J., Shafieyan, Y., & Farokhi, M. (2010). Journal of Biomedical Materials Research, 94A, 137.CrossRefGoogle Scholar
  12. 12.
    Russias, J., Saiz, E., Nalla, R. K., Gryn, K., Ritchie, R. O., & Tomsia, A. P. (2006). Material Science and Engineering: Biomimetic and Material Sensory Systems, 26, 1289.CrossRefGoogle Scholar
  13. 13.
    Kasuga, T., Maeda, H., Kato, K., Nogami, M., Hata, K., & Ueda, M. (2003). Biomaterials, 24, 3247.CrossRefGoogle Scholar
  14. 14.
    Jain, R. A. (2000). Biomaterials, 21, 2475.CrossRefGoogle Scholar
  15. 15.
    Karp, J. M., Shoichet, M. S., & Davies, J. E. (2003). Journal of Biomedical Materials Research, 64A, 388.CrossRefGoogle Scholar
  16. 16.
    Shi, X., Wang, Y., Ren, L., Gong, Y., & Wang, D. A. (2009). Pharmaceutical Research, 26, 422.CrossRefGoogle Scholar
  17. 17.
    Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2008). Journal of Materials Science: Materials in Medicine, 19, 459.Google Scholar
  18. 18.
    Boccaccini, A. R., Blaker, J. J., Maquet, V., Chung, W., Jerome, R., & Nazhat, S. N. (2006). Journal of Materials Science, 41, 3999.CrossRefGoogle Scholar
  19. 19.
    Eslami, H., Solati-Hashjin, M., & Tahriri, M. (2009). Materials Science and Engineering: C, 29, 1387.CrossRefGoogle Scholar
  20. 20.
    Jha, L. J., Best, S. M., Knowles, J. C., Rehman, I., Santos, J. D., & Bonfeild, W. (1997). Journal of Materials Science: Materials in Medicine, 8, 185.Google Scholar
  21. 21.
    Sogo, Y., Ito, A., Yokoyama, D., Yamazaki, A., & Legeros, R. Z. (2007). Journal of Materials Science: Materials in Medicine, 18, 1001.Google Scholar
  22. 22.
    Qu, W., Zhong, D., Wu, P., Wang, J., Han, B., & Bone, J. (2008). Mineral and Metabolism, 26, 328.CrossRefGoogle Scholar
  23. 23.
    Caverzasio, J., Palmer, G., & Bonjour, J. P. (1998). Bone, 22, 585.CrossRefGoogle Scholar
  24. 24.
    Lau, K. H. W., & Baylink, D. J. (2003). Journal of Bone and Mineral Research, 18, 1897.CrossRefGoogle Scholar
  25. 25.
    Riggs, B. L., Ofallon, W. M., & Lane, A. (1994). Journal of Bone and Mineral Research, 9, 265.CrossRefGoogle Scholar
  26. 26.
    Haguenauer, D., Welch, V., Shea, B., Tugwell, P., Adachi, J. D., & Wells, G. (2000). Osteoporosis International, 9, 727.CrossRefGoogle Scholar
  27. 27.
    Guanabens, N., Farrerons, J., Erez-Edo, P. L., Monegal, A., Renau, A., Carbonell, J., Roca, M., Torra, M., & Pavesi, M. (2000). Bone, 27, 123.CrossRefGoogle Scholar
  28. 28.
    Wang, N., Shenwu, X., Li, C., & Feng, M. F. (2000). Journal of Biomaterials Science Polymer Edition, 11, 301.CrossRefGoogle Scholar
  29. 29.
    Kothapalli, C., Shaw, M., & Wei, M. (2005). Acta Biomaterialia, 1, 53.CrossRefGoogle Scholar
  30. 30.
    Komath, M., & Varma, H. K. (2003). Bulletin of Materials Science, 26, 415.CrossRefGoogle Scholar
  31. 31.
    Eslami, H., Solati-Hashjin, M., & Tahriri, M. (2008). Journal of the Ceramic Process Research, 9, 224.Google Scholar
  32. 32.
    Lv, Q., Nair, L., & Laurencin, C. T. (2009). Journal of Biomedical Materials Research, 91A, 679.CrossRefGoogle Scholar
  33. 33.
    Jiang, T., Abdel-Fattah, W. I., & Laurencin, C. T. (2006). Biomaterials, 27, 4894.CrossRefGoogle Scholar
  34. 34.
    Borden, M., El-Amin, S. F., Attawia, M., & Laurencin, C. T. (2003). Biomaterials, 24, 597.CrossRefGoogle Scholar
  35. 35.
    Borden, M., Attawia, M., Khan, Y., & Laurencin, C. T. (2002). Biomaterials, 23, 551.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Biomaterial Group, Faculty of Biomedical EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations