Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 5, pp 2377–2389 | Cite as

Cultivation of Scenedesmus obliquus in Photobioreactors: Effects of Light Intensities and Light–Dark Cycles on Growth, Productivity, and Biochemical Composition

  • Barbara Gris
  • Tomas Morosinotto
  • Giorgio M. Giacometti
  • Alberto Bertucco
  • Eleonora SforzaEmail author
Article

Abstract

One of the main parameters influencing microalgae production is light, which provides energy to support metabolism but, if present in excess, can lead to oxidative stress and growth inhibition. In this work, the influence of illumination on Scenedesmus obliquus growth was assessed by cultivating cells at different light intensities in a flat plate photobioreactor. S. obliquus showed a maximum growth rate at 150 μmol photons m−2 s−1. Below this value, light was limiting for growth, while with more intense illumination photosaturation effects were observed, although cells still showed the ability to duplicate. Looking at the biochemical composition, light affected the pigment contents only while carbohydrate, lipid, and protein contents remained stable. By considering that in industrial photobioreactors microalgae cells are subjected to light–dark cycles due to mixing, algae were also grown under pulsed illumination (5, 10, and 15 Hz). Interestingly, the ability to exploit pulsed light with good efficiency required a pre-acclimation to the same conditions, suggesting the presence of a biological response to these conditions.

Keywords

Light intensity Pulsed light Biodiesel Microalgae Photosynthesis Light use efficiency 

Notes

Acknowledgments

TM acknowledges ERC starting grant no. 309485 (BioLEAP).

Supplementary material

12010_2013_679_MOESM1_ESM.doc (134 kb)
Figure S1 Pigments absorption spectra extracted from 10∙106 Cells/ml, for each light intensity, normalized to the maximum of peak at 665 nm (DOC 133 kb)
12010_2013_679_MOESM2_ESM.doc (35 kb)
Figure S2 Pulsed light conditions employed for Scenedesmus obliquus growth (DOC 35 kb)
12010_2013_679_MOESM3_ESM.doc (32 kb)
Table S1 R2, a and b parameters of the linear regression lines to calculate specific growth rate under different light intensities (DOC 31 kb)

References

  1. 1.
    Demirbas, A., & Fatih Demirbas, M. (2011). Energ. Convers. Manage., 52(1), 163–170.Google Scholar
  2. 2.
    Heilmann, S. M., Jader, L. R., Harned, L. A., Sadowsky, M. J., Schendel, F. J., Lefebvre, P. A., von Keitz, M. G., & Valentas, K. J. (2011). Appl. Energ., 88(10), 3286–3290.CrossRefGoogle Scholar
  3. 3.
    Chisti, Y. (2007). Biotechnology Advances, 25(3), 294–306.CrossRefGoogle Scholar
  4. 4.
    Malcata, F. X. (2011). Trends in Biotechnology, 29(11), 542–549.CrossRefGoogle Scholar
  5. 5.
    Greenwell, H. C., Laurens, L. M. L., Shields, R. J., Lovitt, R. W., & Flynn, K. J. (2010). Journal of the Royal Society Interface, 7(46), 703–726.CrossRefGoogle Scholar
  6. 6.
    Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., & Smith, A. G. (2010). Curr. Opin. Biotech., 21(3), 277–286.CrossRefGoogle Scholar
  7. 7.
    Demirbas, A. (2011). Appl. Energ., 88(10), 3541–3547.CrossRefGoogle Scholar
  8. 8.
    Koller, M., Salerno, A., Tuffner, P., Koinigg, M., Böchzelt, H., Schober, S., Pieber, S., Schnitzer, H., Mittelbach, M., & Braunegg, G. (2012). Journal of Cleaner Production, 37, 377–388.CrossRefGoogle Scholar
  9. 9.
    Munn, M., Frey, J., & Tesoriero, A. (2010). Environmental Management, 45(3), 603–615.CrossRefGoogle Scholar
  10. 10.
    Kitaya, Y., Azuma, H., & Kiyota, M. (2005). Advances in Space Research, 35(9), 1584–1588.CrossRefGoogle Scholar
  11. 11.
    Stephens, E., Ross, I. L., Mussgnug, J. H., Wagner, L. D., Borowitzka, M. A., Posten, C., Kruse, O., & Hankamer, B. (2010). Trends in Plant Science, 15(10), 554–564.CrossRefGoogle Scholar
  12. 12.
    Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Biochim. Biophy. Acta, 1767(6), 414–421.CrossRefGoogle Scholar
  13. 13.
    Nixon, P. J., Michoux, F., Yu, J., Boehm, M., & Komenda, J. (2010). Annals of Botany, 106(1), 1–16.CrossRefGoogle Scholar
  14. 14.
    Sforza, E., Simionato, D., Giacometti, G. M., Bertucco, A., & Morosinotto, T. (2012). PloS One, 7(6), e38975.CrossRefGoogle Scholar
  15. 15.
    Richmond, A., Cheng-Wu, Z., & Zarmi, Y. (2003). Biomolecular Engineering, 20(4–6), 229–236.CrossRefGoogle Scholar
  16. 16.
    Kok, B. (1956). Biochimica et Biophysica Acta, 21(2), 245–258.CrossRefGoogle Scholar
  17. 17.
    Matthijs, H. C., Balke, H., van Hes, U. M., Kroon, B. M., Mur, L. R., & Binot, R. A. (1996). Biotechnology and Bioengineering, 50(1), 98–107.CrossRefGoogle Scholar
  18. 18.
    Nedbal, L., Tichy, V., Xiong, F., & Grobbelaar, J. U. (1996). Journal of Applied Phycology, 8, 325–333.CrossRefGoogle Scholar
  19. 19.
    Kim, Z.-H., Kim, S.-H., Lee, H.-S., & Lee, C.-G. (2006). Enzyme Micro. Tech., 39(3), 414–419.CrossRefGoogle Scholar
  20. 20.
    Gordon, J. M., & Polle, J. E. W. (2007). Appl. Microbiol. Biot., 76(5), 969–975.CrossRefGoogle Scholar
  21. 21.
    Grobbelaar, J. U. (2010). Photosynthesis Research, 106(1–2), 135–144.CrossRefGoogle Scholar
  22. 22.
    Xue, S., Su, Z., & Cong, W. (2011). Journal of Biotechnology, 151(3), 271–277.CrossRefGoogle Scholar
  23. 23.
    Carvalho, A. P., Silva, S. O., Baptista, J. M., & Malcata, F. X. (2011). Appl. Microbiol. Biot., 89(5), 1275–1288.CrossRefGoogle Scholar
  24. 24.
    Park, K.-H., & Lee, C.-G. (2001). Biotechnol. Bioproc. E., 6(3), 189–193.CrossRefGoogle Scholar
  25. 25.
    Brindley, C., & Fernández, F. G. A. (2011). Bioresource Technol., 102(3), 3138–3148.CrossRefGoogle Scholar
  26. 26.
    Janssen, M., Bresser, L. D., Baijens, T., Tramper, J., Mur, L. R., Snel, F. H., & Wijffels, H. (2000). Journal of Applied Phycology, 12(3–5), 225–237.CrossRefGoogle Scholar
  27. 27.
    Xue, S., Zhang, Q., Wu, X., Yan, C., & Cong, W. (2013). Bioresource Technol, 138, 141–147.CrossRefGoogle Scholar
  28. 28.
    Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). Bioresource Technol., 102(3), 3071–3076.CrossRefGoogle Scholar
  29. 29.
    Kaewkannetra, P., Enmak, P., & Chiu, T. (2012). Biotechnol. Bioproc. E, 17(3), 591–597.CrossRefGoogle Scholar
  30. 30.
    Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., & Stanier, R. Y. (1979). J. Gen. Microb., 111(1), 1–61.CrossRefGoogle Scholar
  31. 31.
    Perner-Nochta, I., & Posten, C. (2007). Journal of Biotechnology, 131(3), 276–285.CrossRefGoogle Scholar
  32. 32.
    Morris, D. L. (1948). Science, 107(2775), 254–255.CrossRefGoogle Scholar
  33. 33.
    Trevelyan, W. E., & Harrison, J. S. (1952). Biochemical Journal, 50(3), 298–303.Google Scholar
  34. 34.
    Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Olson, B. J., & Klenk, D. C. (1985). Analytical Biochemistry, 150(1), 76–78.CrossRefGoogle Scholar
  35. 35.
    Msanne, J., Xu, D., Konda, A. R., Casas-Mollano, J. A., Awada, T., Cahoon, E. B., & Cerutti, H. (2012). Phytochemistry, 75, 50–59.CrossRefGoogle Scholar
  36. 36.
    Bligh, E. G., & Dyer, W. J. (1959). Can. J. Biochem. Phys., 37(8), 911–917.CrossRefGoogle Scholar
  37. 37.
    Wellburn, A. R. (1994). Journal of Plant Physiology, 144(3), 307–313.CrossRefGoogle Scholar
  38. 38.
    Liu, J., Yuan, C., Hu, G., & Li, F. (2012). Appl. Biochem. Biotech., 166(8), 2127–2137.CrossRefGoogle Scholar
  39. 39.
    Bonente, G., Pippa, S., Castellano, S., Bassi, R., & Ballottari, M. (2011). Journal of Biological Chemistry, 287, 5833–5847.CrossRefGoogle Scholar
  40. 40.
    Baker, N. R. (2008). Annual Review of Plant Biology, 59, 89–113.CrossRefGoogle Scholar
  41. 41.
    Maxwell, K., & Johnson, G. N. (2000). J. Experim. Bot., 51(345), 659–668.CrossRefGoogle Scholar
  42. 42.
    Simionato, D., Sforza, E., Corteggiani Carpinelli, E., Bertucco, A., Giacometti, G. M., & Morosinotto, T. (2011). Bioresource Technol., 102(10), 6026–6032.CrossRefGoogle Scholar
  43. 43.
    Cheirsilp, B., & Torpee, S. (2012). Bioresource Technol., 110, 510–516.CrossRefGoogle Scholar
  44. 44.
    Solovchenko, A. E. (2008). Journal of Applied Phycology, 20, 245–251.CrossRefGoogle Scholar
  45. 45.
    Ruangsomboon, S. (2012). Bioresource Technol., 109, 261–265.CrossRefGoogle Scholar
  46. 46.
    Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2013). Bioresource Technol., 143, 1–9.CrossRefGoogle Scholar
  47. 47.
    Grobbelaarl, J. U., Nedbal, L., & Tichy, V. (1996). Journal of Applied Phycology, 8(4–5), 335–343.CrossRefGoogle Scholar
  48. 48.
    Vejrazka, C., Janssen, M., Streefland, M., & Wijffels, R. H. (2011). Biotechnology and Bioengineering, 108(12), 2905–2913.CrossRefGoogle Scholar
  49. 49.
    Masojidek, J., Torzillo, G., Koblizek, M., Kopecky, J., Bernardini, P., Sacchi, A., & Komenda, J. (1999). Planta, 209(1), 126–135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Barbara Gris
    • 1
  • Tomas Morosinotto
    • 2
  • Giorgio M. Giacometti
    • 2
  • Alberto Bertucco
    • 1
  • Eleonora Sforza
    • 1
    Email author
  1. 1.Department of Industrial EngineeringUniversity of PaduaPaduaItaly
  2. 2.Department of BiologyUniversity of PaduaPaduaItaly

Personalised recommendations