Applied Biochemistry and Biotechnology

, Volume 172, Issue 5, pp 2363–2376 | Cite as

Thidiazuron-Induced Changes in Biomass Parameters, Total Phenolic Content, and Antioxidant Activity in Callus Cultures of Artemisia absinthium L.

Article

Abstract

Callus culture of Artemisia absinthium L. was established for enhanced production of phenolics and higher antioxidant activity. Callus was induced from seed-derived leaf explants, incubated on to MS media supplemented with thidiazuron (TDZ; 0.5–5.0 mg/l) either alone or in combination with α-naphthalene acetic acid (NAA; 1.0 mg/l). These callus cultures were investigated for their growth kinetics, total phenolic content, and antioxidant activity on weekly basis for a period of 49 days. Maximum dry biomass accumulation of 8.73 g/l was observed on day 42 in response to 1.0 mg/l TDZ and 1.0 mg/l NAA. Furthermore, maximum level of total phenolic content of 8.53 mg GAE/g DW and highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of 72.6 % were observed in calli formed in response to 1.0 mg/l TDZ on day 42. The results showed a positive correlation of total phenolic content and DPPH radical scavenging activity in most of the callus cultures of A. absinthium L.

Keywords

Artemisia Callus Phenolics Antioxidant activity Thidiazuron 

References

  1. 1.
    Krebs, S., Omer, T. N., & Omer, B. (2010). Phytomedicine, 17(5), 305–309.CrossRefGoogle Scholar
  2. 2.
    Singh, R., Verma, P. K., & Singh, G. (2012). Journal of Intercultural Ethnopharmacology, 1(2), 101–104.CrossRefGoogle Scholar
  3. 3.
    Kordali, S., Kotan, R., Mavi, A., Cakir, A., Ala, A., & Yildirim, A. (2005). Journal of Agricultural and Food Chemistry, 53(24), 9452–9458.CrossRefGoogle Scholar
  4. 4.
    Canadanovic‐Brunet, J. M., Djilas, S. M., Cetkovic, G. S., & Tumbas, V. T. (2005). Journal of the Science of Food and Agriculture, 85(2), 265–272.CrossRefGoogle Scholar
  5. 5.
    Zhao, J., Davis, L. C., & Verpoorte, R. (2005). Biotechnology Advances, 23(4), 283–333.CrossRefGoogle Scholar
  6. 6.
    Cieśla, L., Kowalska, I., Oleszek, W., & Stochmal, A. (2013). Phytochemical Analysis, 24(1), 47–52.CrossRefGoogle Scholar
  7. 7.
    Lai, H., & Singh, N. P. (2006). Cancer Letters, 231(1), 43–48.CrossRefGoogle Scholar
  8. 8.
    Sun, J., Chu, Y. F., Wu, X., & Liu, R. H. (2002). Journal of Agricultural and Food Chemistry, 50(25), 7449–7454.CrossRefGoogle Scholar
  9. 9.
    Rice-evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). Free Radical Research, 22(4), 375–383.CrossRefGoogle Scholar
  10. 10.
    Hussain, M. S., Fareed, S., Saba Ansari, M., Rahman, A., Ahmad, I. Z., & Saeed, M. (2012). Journal of Pharmacy & Bio Allied Sciences, 4(1), 10.CrossRefGoogle Scholar
  11. 11.
    Murashige, T., & Skoog, F. (1962). Physiologia Plantarum, 15(3), 473–497.CrossRefGoogle Scholar
  12. 12.
    Ali, M., Abbasi, B. H., & Ihsan-ul-haq, A. (2013). Industrial Crops and Products, 49, 400–406.CrossRefGoogle Scholar
  13. 13.
    Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Journal of Agricultural and Food Chemistry, 46(10), 4113–4117.CrossRefGoogle Scholar
  14. 14.
    Abbasi, B. H., Khan, M. A., Mahmood, T., Ahmad, M., Chaudhary, M. F., & Khan, M. A. (2010). Plant Cell Tissue and Organ Culture (PCTOC), 101(3), 371–376.CrossRefGoogle Scholar
  15. 15.
    Nin, S., Bennici, A., Roselli, G., Mariotti, D., Schiff, S., & Magherini, R. (1997). Plant Cell Reports, 16(10), 725–730.CrossRefGoogle Scholar
  16. 16.
    Zia, M., Mannan, A., & Chaudhary, M. F. (2007). Pakistan Journal of Botany, 39. Google Scholar
  17. 17.
    Zia, M., Rehman, R., & Chaudhary, M. F. (2007). African Journal of Biotechnology, 6(16).Google Scholar
  18. 18.
    Rasool, R., Ganai, B. A., Kamili, A. N., & Akbar, S. (2012). Natural Product Research, 26(22), 2103–2106.Google Scholar
  19. 19.
    Danya, U., Udhayasankar, M. R., Punitha, D., Arumugasamy, K., & Suresh, S. N. (2012). International Journal of Plant, Animal and Environmental Sciences, 2(4).Google Scholar
  20. 20.
    Abbasi, B. H., Khan, M., Guo, B., Bokhari, S. A., & Khan, M. A. (2011). Plant Cell Tissue and Organ Culture (PCTOC), 105(3), 337–344.CrossRefGoogle Scholar
  21. 21.
    Erişen, S., Atalay, E., & Yorgancılar, M. (2011). Turkish Journal of Botany, 35, 521–526.Google Scholar
  22. 22.
    Yorgancilar, M., & Erisen, S. (2011). Journal of Animal and Plant Sciences, 21. Google Scholar
  23. 23.
    Huan, L. V. T., Takamura, T., & Tanaka, M. (2004). Plant Science, 166(6), 1443–1449.CrossRefGoogle Scholar
  24. 24.
    Murthy, B. N. S., Murch, S. J., & Saxena, P. K. (1998). In Vitro Cellular & Developmental Biology-Plant, 34(4), 267–275.CrossRefGoogle Scholar
  25. 25.
    Schulze, J. (2007). Fruit Vegetable Cereal Sci Biotechnol, 1, 64–79.Google Scholar
  26. 26.
    Huetteman, C. A., & Preece, J. E. (1993). Plant Cell, Tissue and Organ Culture, 33(2), 105–119.CrossRefGoogle Scholar
  27. 27.
    Chen, X. Y., Ye, Q. S., & Liu, W. (2003). Subtropical Plant Science, 3, 015.Google Scholar
  28. 28.
    Nabila, S. K., Fawzia, M. J., Naser, A. A., & Rida, A. S. (2003). Plant cell, Tissue and Organ Culture, 73(2), 117–121.CrossRefGoogle Scholar
  29. 29.
    Jayasinghe, C., Gotoh, N., Aoki, T., & Wada, S. (2003). Journal of Agricultural and Food Chemistry, 51(15), 4442–4449.CrossRefGoogle Scholar
  30. 30.
    Ali, M. B., Khatun, S., Hahn, E. J., & Paek, K. Y. (2006). Plant Growth Regulation, 49(2–3), 137–146.CrossRefGoogle Scholar
  31. 31.
    Kim, H. J., Chen, F., Wang, X., & Choi, J. H. (2006). Journal of Agricultural and Food Chemistry, 54(19), 7263–7269.CrossRefGoogle Scholar
  32. 32.
    Ali, M. B., Hahn, E. J., & Paek, K. Y. (2007). Molecules, 12(3), 607–621.CrossRefGoogle Scholar
  33. 33.
    Roby, M. H. H., Sarhan, M. A., Selim, K. A., & Khalel, K. I. (2013). Industrial Crops and Products, 43, 827–831.CrossRefGoogle Scholar
  34. 34.
    Schmeda-Hirschmann, G., Jordan, M., Gerth, A., & Wilken, D. (2005). Zeitschrift für Naturforschung, 60(1–2), 5–10.Google Scholar
  35. 35.
    Naz, S., Ali, A., & Iqbal, J. (2008). Pakistan Journal of Botany, 40(6), 2525–2539.Google Scholar
  36. 36.
    Giri, L., Dhyani, P., Rawat, S., Bhatt, I. D., Nandi, S. K., Rawal, R. S., & Pande, V. (2012). Industrial Crops and Products, 39, 1–6.CrossRefGoogle Scholar
  37. 37.
    Amid, A., Johan, N. N., Jamal, P., & Zain, W. N. W. M. (2011). African Journal of Biotechnology, 10(81), 18653–18656.Google Scholar
  38. 38.
    Al Khateeb, W., Hussein, E., Qouta, L., Aludatt, M., Al-Shara, B., & Abu-zaiton, A. (2012). Plant Cell Tissue and Organ Culture (PCTOC), 110(1), 103–110.CrossRefGoogle Scholar
  39. 39.
    Diwan, R., Shinde, A., & Malpathak, N. (2012). Journal of Botany. doi:10.1155/2012/685427.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of BiotechnologyQuaid-i-Azam UniversityIslamabadPakistan

Personalised recommendations