Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 4, pp 2143–2159 | Cite as

Enzymatic Trends of Fructooligosaccharides Production by Microorganisms

  • Mohd Anis GanaieEmail author
  • Agbaje Lateef
  • Uma Shanker Gupta
Article

Abstract

Fructooligosaccharides are influential prebiotics that affect various physiological functions in such a way that they promote positive impact to health. They occur naturally in many fruits and vegetables in trace amounts. However, they are mainly produced commercially by the reaction of microbial enzymes with di- or polysaccharides, such as sucrose or inulin as a substrate. For maximum production of fructooligosaccharides on an industrial level, development of more enzymes with high activity and stability is required. This has attracted the attention of biotechnologists and microbiologists worldwide. This study aims to discuss the new trends in the production of fructooligosaccharide and its effect on numerous health qualities through which it creates great demand in the sugar market.

Keywords

Prebiotic Fructooligosaccharides Inulin Microorganisms Fructosyltransferase Immobilisation 

Notes

Acknowledgments

The lead author MAG is greatly thankful to the Department of Zoology, Dr. Harisingh Gour University, Sagar (MP) India for carrying out research work and also to UGC for providing SRF UGC BSR meritorious fellowship for financial support.

References

  1. 1.
    Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Trends in Food Science and Technology, 16, 442–457.Google Scholar
  2. 2.
    Ganaie, M. A., Gupta, U. S., & Kango, N. (2013). Journal of Molecular Catalysis B: Enzymatic, 97, 12–17.Google Scholar
  3. 3.
    Salinas, M. A., & Perotti, N. A. (2009). Journal of India Industrial Microbiology Biotechnology, 36, 39–43.Google Scholar
  4. 4.
    Crittenden, R. G., & Playne, M. J. (1996). Trends in Food Science and Technology, 7, 353–360.Google Scholar
  5. 5.
    Oku, T. (1994). Goldberg Ist ed (pp. 202–217). New York: Chapman and Hall.Google Scholar
  6. 6.
    Kaur, N., & Gupta, A. K. (2002). Journal of Biosciences, 27, 703–714.Google Scholar
  7. 7.
    Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2003). Asian Journal of Microbiology Biotechnology Environmental Sciences, 5, 313–318.Google Scholar
  8. 8.
    Hidaka, H., Eida, T., Takizawa, T., & Toshira, Y. (1986). Bifidobacteria. Microflora, 5, 37–50.Google Scholar
  9. 9.
    Mabel, M. J., Sangeetha, P. T., Platel, K., Srinavasan, K., & Prapulla, S. G. (2008). Carbohydrate Research, 343, 56–66.Google Scholar
  10. 10.
    Soo, L. J., Park, S. W., Lee, J. W., Oh, K. K., & Kim, S. W. (2005). Journal of Microbiology and Biotechnology, 15, 1317–1322.Google Scholar
  11. 11.
    Gutierrez-Alonso, P. andez-Arrojo L.F. Plou, J.F. and andez-Lobato M.F. (2009) FEMS Yeast Research 11, 1–6Google Scholar
  12. 12.
    Linde, D., Colinas, B. R., Estevez, M., Poveda, A., Plou, F. J., & Lobato, M. F. (2012). Bioresource Technology, 109, 123–130.Google Scholar
  13. 13.
    Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Process Biochemistry, 39, 755–760.Google Scholar
  14. 14.
    Dominguez, E., Nilson, M., & Hahn-Hagerdal, B. (1988). Enzyme Microbial Technology, 10, 606–610.Google Scholar
  15. 15.
    Jung, K. H., Yun, J. W., Kang, K. R., Lim, J. Y., & Lee, J. H. (1989). Enzyme Microbial Technology, 11, 491–494.Google Scholar
  16. 16.
    Yun, J. W. (1996). Enzyme Microbial Technology, 19, 107–117.Google Scholar
  17. 17.
    Antosova, M., Illeova, V., Vandakova, M., Druzkovska, A., & Polakova, M. (2008). Journal of Biotechnology, 135, 58–63.Google Scholar
  18. 18.
    Fernandez, R. C., Ottoni, E. S., Silva, D. A., Matsubra, R. M. S., & Carter, J. M. (2007). Applied Microbiology Biotechnology, 75, 87–93.Google Scholar
  19. 19.
    Hidaka, H., Hirayama, M., & Sumi, S. A. (1988). Agricultural and Biological Chemistry, 52, 1187–1988.Google Scholar
  20. 20.
    Hayashi, S., Nonokuchi, M., Imada, K., & Ueno, H. (1990). Journal of Industrial Microbiology, 5, 395–400.Google Scholar
  21. 21.
    Lateef, A., Oloke, J. K., & Prapulla, S. G. (2007). Enzyme Microbial Technology, 40, 1067–1070.Google Scholar
  22. 22.
    Maugeri, F., & Hernalsteens, S. (2007). Journal of Molecular Catalysis B: Enzymatic, 49, 43–49.Google Scholar
  23. 23.
    El-Beih, F. M., Abdel-Fattah, A. M., Hasanein, D. A., Mostafa, F. A., & Abdel-Fatta, A. F. (2009). Journal of Applied Sciences Research, 5, 1132–1141.Google Scholar
  24. 24.
    Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2007). Journal of Bioscience and Bioengineering, 103, 491–493.Google Scholar
  25. 25.
    Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2005). Journal of Food Engineering, 68, 57–64.Google Scholar
  26. 26.
    Park, J. P., Bae, J. T., & Yun, J. W. (1999). Biotechnology Letters, 21, 987–990.Google Scholar
  27. 27.
    Chen, W. C., & Liu, C. H. (1996). Enzyme Microbial Technology, 18, 153–160.Google Scholar
  28. 28.
    Barthomeuf, C., & Pourrat, H. (1995). Biotechnology Letters, 17, 91l–916l.Google Scholar
  29. 29.
    Ganaie, M. A., Dehariya, K., & Gupta, U. S. (2013). Indo American Journal of Pharm Research, 3, 4138–4148.Google Scholar
  30. 30.
    Yang, F. C., & Liau, C. B. (1998). Process Biochemistry, 33, 547–553.Google Scholar
  31. 31.
    Yang, B. K., Ha, J. Y., Jeong, S. C., Das, S., Yun, J. W., Lee, Y. S., Choi, J. W., & Song, C. H. (2000). Journal of Microbiology and Biotechnology, 10, 784–788.Google Scholar
  32. 32.
    Papagianni, M. (2007). Biotechnology Advance, 25, 244–263.Google Scholar
  33. 33.
    Dhake, A. B., & Patil, M. B. (2007). Brazilian Journal of Microbiology, 38, 194–199.Google Scholar
  34. 34.
    Sheu, D. C., Lio, P. J., Chen, S. T., Lin, C. T., & Duan, K. J. (2001). Biotechnology Letters, 23, 1499–1503.Google Scholar
  35. 35.
    Lateef, A., Oloke, J. K., Guegium Kana, E. B., Oyeniyi, S. O., Onifade, O. R., Oyeleye, A. O., Oladosu, O. C., & Oyelami, A. O. (2008). World Journal Microbiology Biotechnology, 24, 2369–2374.Google Scholar
  36. 36.
    Maiorano, A., da Piccoli, R., Silva, E., & Rodrigues, M. F. A. (2008). Biotechnology Letters, 30, 1867–1877.Google Scholar
  37. 37.
    Sangeetha, P. T., Ramesh, M. N., & Prapulla, S. G. (2004). Applied Microbiology Biotechnology, 65, 530–537.Google Scholar
  38. 38.
    Mussatto, S. I., Ballesteros, L. F., Martins, S., Maltos, D. A. F., Aguilar, C. N., & Teixeira, J. A. (2012). Food Bioprocess Technology. doi: 10.1007/s11947-012-0873-y.Google Scholar
  39. 39.
    Lateef, A., Oloke, J. K., Gueguim-Kana, E. B., & Raimi, O. R. (2012). Acta Aliments, 41, 100–117.Google Scholar
  40. 40.
    Lateef, A., & Gueguim Kana, E. B. (2012). Romanian Biotechnology Letters, 17, 7309–7316.Google Scholar
  41. 41.
    Pandey, A., Soccol, C. R., Selvakumar, P., Soccol, V. T., Krieger, N., & Fontana, J. D. (1999). Applied Biochemistry and Biotechnology, 81, 35–52.Google Scholar
  42. 42.
    Cho, Y. J., & Yun, J. W. (2002). Process Biochemistry, 37, 1325–1331.Google Scholar
  43. 43.
    Chi, Z., Zhang, T., Liu, G., & Xue, L. (2009). Applied Microbiology and Biotechnology, 82, 211–220.Google Scholar
  44. 44.
    Ricca, E., Calabro, V., Curcio, S., & Iorio, G. (2009). Process Biochemistry, 44, 466–470.Google Scholar
  45. 45.
    Derycke, D. J., & Vandamme, E. J. (1984). Journal of Chemical Technology and Biotechnology, 34, 45–51.Google Scholar
  46. 46.
    Onodera, S., & Shiomi, N. (1988). Agricultural and Biological Chemistry, 52, 2569–2576.Google Scholar
  47. 47.
    Singh, R. S., Dhaliwal, R., & Puri, M. (2006). Process Biochemistry, 41, 1703–1707.Google Scholar
  48. 48.
    Zherebtsovn, N. A., Abramova, I. N., Shelamova, S. A., & Popova, T. N. (2003). Applied Biochemistry and Microbiology, 39, 544–548.Google Scholar
  49. 49.
    Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1999). Journal of Fermentation and Bioengineering, 84, 369–371.Google Scholar
  50. 50.
    Takahashi, N., Mizuno, F., & Takamori, K. (1985). Infection and Immunity, 47, 271–276.Google Scholar
  51. 51.
    Singh, R. S., & Singh, R. P. (2010). Food Technology Biotechnology, 48, 435–450.Google Scholar
  52. 52.
    Georgescu, L.A. and Stoica, I. (2005) The Annals of the University Dunarea de Jos of Galati – No.1.Google Scholar
  53. 53.
    Yun, J. W., Park, J. P., Song, C. H., Lee, C. Y., Kim, J. H., & Song, S. K. (2000). Bioprocess Engineering, 22, 189–194.Google Scholar
  54. 54.
    Santos, M. P., & Maugeri, F. (2007). Food Technology Biotechnology, 45, 181–186.Google Scholar
  55. 55.
    Park, Y. K., & Almeida, M. M. (1991). World Journal Microbiology and Biotechnology, 7, 331–334.Google Scholar
  56. 56.
    Hernalsteens, S., & Maugeri, F. (2010). Journal of Food Biochemistry, 34, 520–534.Google Scholar
  57. 57.
    Lateef, A., Oloke, J. K., & Prapulla, S. G. (2007). Turkish Journal of Biology, 31, 147–154.Google Scholar
  58. 58.
    Song, D. D., & Jacques, N. A. (1999). Biochemical Journal, 341, 285–291.Google Scholar
  59. 59.
    Michielse, C. B., Ram, A. F. J., Van, D., & Hondel, C. A. M. J. (2004). Current Genetics, 45, 399–403.Google Scholar
  60. 60.
    Archer, D. B., & Dyer, P. S. (2004). Current Opinion in Microbiology, 7, 499–504.Google Scholar
  61. 61.
    Liebl, W., Brem, D., & Gotschlich, A. (1998). Applied Microbiology and Biotechnology, 50, 55–64.Google Scholar
  62. 62.
    Gallagher, J., Cairns, A., & Pollock, C. (2004). Journal of Experimental Botany, 55, 557–569.Google Scholar
  63. 63.
    Kawakami, A., & Yoshida, M. (2002). Bioscience, Biotechnology, and Biochemistry, 66, 2297–2305.Google Scholar
  64. 64.
    Olivares-Illana, V., Lopez-Munguıa, A., & Olvera, C. (2003). Journal of Bacteriology, 185, 3606–3612.Google Scholar
  65. 65.
    Rodriguez, M. A., Sanchez, O. F., & Almeciga-Diaz, C. J. (2011). Molecular Biology Reports, 38, 1151–1161.Google Scholar
  66. 66.
    Heyer, A. G., & Wendenburg, R. (2001). Applied and Environmental Microbiology, 67, 363–370.Google Scholar
  67. 67.
    Trujillo, L. E., Arrieta, J. G., Dafhnis, F., Garcia, J., Valdes, Y., Tambara, M., Perez, L., & Hernandez, L. (2001). Enzyme and Microbial Technology, 28, 139–144.Google Scholar
  68. 68.
    Seibel, J., Moraru, R., Gotze, S., Buchholz, K., Naamnieh, S., Pawlowski, A., & Hccht, H. J. (2006). Carbohydrate Research, 341, 2335–2349.Google Scholar
  69. 69.
    Machida, M., Asai, K., Sano, M., & Tanaka, T. (2005). Nature, 438, 1157–1161.Google Scholar
  70. 70.
    Ajdie, D., McShan, W. M., McLaughlin, R. E., Savi, G., Chang, J., Carson, M. B., Primeaux, C., Tian, R., Kenton, S., Jia, H., Lin, S., Qian, Y., Li, S., Zhu, H., Najar, F., Lai, H., White, J., Roe, B. A., & Ferretti, J. J. (2002). Proceedings of the National Academy Sciences of the United States of America, 99, 14435–14439.Google Scholar
  71. 71.
    Kurakake, M., Ogawa, K., Sugie, M., Takemura, A., Sugiura, K., & Komaki, T. (2008). Journal of Agricultural and Food Chemistry, 56, 591–596.Google Scholar
  72. 72.
    Zaborsky, O. R. (1973). Immobilized Enzymes. Cleveland: CRC Press.Google Scholar
  73. 73.
    Carvalho, W., Silva, S. S., Converti, A., & Vitolo, M. (2002). Biotechnology and Bioengineering, 79, 165–169.Google Scholar
  74. 74.
    Cheetham, P. S. J., Garrett, C., & Clark, J. (1985). Biotechnology and Bioengineering, 27, 471–481.Google Scholar
  75. 75.
    Chibata, I., & Tosa, T. (1980). Trends in Biochemistry Sciences, 5, 88–90.Google Scholar
  76. 76.
    Ganaie, M. A., Pathak, L. K., & Gupta, U. S. (2011). Journal of Food Technology, 9, 91–94.Google Scholar
  77. 77.
    Mussattoa, S. I., Aguilarb, C. N., Rodriguesa, L. R., & Teixeiraa, J. A. (2009). Journal of Molecular Catalysis B: Enzymatic, 59, 76–81.Google Scholar
  78. 78.
    Champagne, C. P., Blahuta, N., Brion, F., & Gagnon, C. (2002). Biotechnology and Bioengineering, 68, 681–688.Google Scholar
  79. 79.
    Shin, H. T., Park, K. M., Kang, K. H., Oh, D. J., Lee, S. W., Baig, S. Y., & Lee, J. H. (2004). Letters in Applied Microbiology, 38, 176–179.Google Scholar
  80. 80.
    Jung, K. H., Bang, S. H., Oh, T. K., & Park, H. J. (2011). Biotechnology Letters, 33, 1621–1624.Google Scholar
  81. 81.
    Ganaie, M.A. Rawat, H.K. Wani, O.A. Gupta, U.S. Kango, N. (2013) Process Biochem. Article in pressGoogle Scholar
  82. 82.
    Yun, J. W., & Song, S. K. (1996). Biotechnology and Bioprocess Engineering, 1, 18–21.Google Scholar
  83. 83.
    Xu, Z. W., Li, Y. Q., Wang, Y. H., Yang, B., & Ning, Z. X. (2009). Food Technology Biotechnology, 47, 137–143.Google Scholar
  84. 84.
    Win, T. T., Isono, N., Kusnadi, Y., Watanabe, K., Obae, K., Ito, H., & Matsui, H. (2004). Biotechnology Letters, 26, 499–503.Google Scholar
  85. 85.
    Ghazi, I., Fernandez-Arroja, L., Garcia-Arellano, H., Ferrer, M., Ballesteros, A., & Plou, F. J. (2007). Journal of Biotechnology, 128, 204–211.Google Scholar
  86. 86.
    Markosyan, A. A., Adamyan, M. O., Ekazhev, Z. D., Akopyan, Z. I., & Abelyan, V. A. (2007). Applied Biochemistry Microbiology, 43, 383–389.Google Scholar
  87. 87.
    Nishizawa, K., Nakajima, M., & Nabetani, H. (2001). Food Science and Technology Research, 7, 39–4.Google Scholar
  88. 88.
    Sanchez, O.F. Rodriguez, A.M. Silva, E. and Caicedo, L.A. (2008) Food Bioprocess Technol. DOI 10. 1007/s 11947 008 0121Google Scholar
  89. 89.
    Yoshikawa, J., Amachi, S., Shinoyama, H., & Fujii, T. (2008). Biotechnology Letters, 30, 535–539.Google Scholar
  90. 90.
    Yun, J. W., & Song, S. K. (1996). Biotechnology Bioprocess Engineering, 1, 18–21.Google Scholar
  91. 91.
    Mandlova, A., Antosova, M., Barathova, M., Polakovic, M., Stefuca, V., & Bales, V. (1999). Chemical Papers, 53, 366–369.Google Scholar
  92. 92.
    Yun, J. W., Kim, D. H., Kim, B. W., & Song, S. K. (1999). Biotechnology Letters, 21, 987–990.Google Scholar
  93. 93.
    Park, J. P., Oh, T. K., & Yun, J. W. (2001). Process Biochemistry, 37, 471–476.Google Scholar
  94. 94.
    Babu, I. S., Ramappa, S., Mahesh, D. G., Kumari, K. S., Kumari, K. S., & Ranigaiah, G. S. (2008). Research Journal of Microbiology, 3, 114–121.Google Scholar
  95. 95.
    Hayashi, S., Yoshiyama, T., & Shinohara, S. (2000). Biotechnology Letters, 22, 1465–1469.Google Scholar
  96. 96.
    Lim, J. S., Park, M. C., Lee, J. H., Park, S. W., & Kim, S. W. (2005). European Food Research and Technology, 221, 639–644.Google Scholar
  97. 97.
    Prata, M. B., Mussatto, S. I., Rodrigues, L. R., & Teixeira, J. A. (2010). Biotechnology Letters, 32, 837–840.Google Scholar
  98. 98.
    Bealing, F. J., & Bacon, J. S. D. (1953). The Biochemical Journal, 53, 277–285.Google Scholar
  99. 99.
    Lateef, A., Oloke, J. K., Gueguim-Kana, E. B., Oyeniyi, S. O., Onifade, R. O., Oyeleye, A. O., & Olabiyi, C. O. (2008). Chemical papers, 62, 635–638.Google Scholar
  100. 100.
    Hernalsteens, S., & Maugeri, F. (2008). European Food Research and Technology, 28, 213–221.Google Scholar
  101. 101.
    Straathof, A. J. J., Kieboom, A. P. G., & Van Bekkum, H. (1986). Carbohydrate Research, 146, 154–159.Google Scholar
  102. 102.
    Takeda, H., Kinoshita, S. S. K., & Sasaki, H. (1994). Journal of Fermentation and Bioengineering, 77, 386–389.Google Scholar
  103. 103.
    Katapodis, P., Kalogeris, E., Kekos, D., Macris, B. J., & Christakopoulos, P. (2004). Applications of Microbiology Biotechnology, 63, 378–382.Google Scholar
  104. 104.
    Ning, Y., Wang, J., Chen, J., Yang, N., Jin, Z., & Xu, X. (2010). Bioresearch Technology, 101, 7472–7478.Google Scholar
  105. 105.
    Bekers, M., Laukevics, J., Upite, D., Kaminska, E., Vigants, A., Viesturs, U., Pankova, L., & Danilevics. (2002). Process Biochemistry, 38, 701–706.Google Scholar
  106. 106.
    Lee, K. J., Choi, J. D., & Lim, J. Y. (1992). World Journal Microbiology Biotechnology, 8, 411–415.Google Scholar
  107. 107.
    Hocine, L. L., Wang, Z., Jaing, B., & Xu, S. (2000). Journal of Biotechnology, 81, 73–84.Google Scholar
  108. 108.
    Alonso, P. G. Arrojo, L. F. Plou, F. J. Lobato, and M. F. (2009) FEMS Yeast Res. 1-6.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mohd Anis Ganaie
    • 1
    Email author
  • Agbaje Lateef
    • 2
  • Uma Shanker Gupta
    • 1
  1. 1.Microbial Technology Laboratory, Department of ZoologyDr. Harisingh Gour UniversitySagarIndia
  2. 2.Department of Pure and Applied BiologyLadoke Akintola University of TechnologyOgbomosoNigeria

Personalised recommendations