Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 4, pp 2055–2069 | Cite as

miRNAs: A New Method for Erythroid Differentiation of Hematopoietic Stem Cells Without the Presence of Growth Factors

  • Fatemeh Kouhkan
  • Maryam Hafizi
  • Naser Mobarra
  • Majid Mossahebi-Mohammadi
  • Shahin Mohammadi
  • Mehrdad Behmanesh
  • Mina Soufi Zomorrod
  • Shaban Alizadeh
  • Reyhaneh Lahmy
  • Morteza DaliriEmail author
  • Masoud SoleimaniEmail author
Article

Abstract

Micro RNAs (miRNAs) are a novel class of non-coding regulatory RNA molecules that contribute to post-transcriptional gene regulation. Recent studies have demonstrated that specific miRNAs such as miR-150, miR-154, and miR-451 have key roles in erythropoiesis. To date, stimulatory cytokines are considered as unique effectors for in vitro differentiation of HSCs to erythropoietic lineage. However, the use of these factors is not cost-effective for clinical applications and therapeutic strategies. Here, we present a novel and cost-effective strategy in which miRNAs expression modulation promotes erythroid differentiation in HSCs in the absence of any extrinsic factors. Thus, CD133+ hematopoietic stem cells purified from human umbilical cord blood were treated with pre-miR-451 containing lentiviruses, anti-miR-150 and anti-miR-154 in the absence of growth factors and cytokines. Obtained results indicated that miR-451 upregulation and miR-150 downregulation have positive effect on GATA-1, FOG-1, and EKLF, CD71 and CD235a genes expression and induce hemoglobinization efficiently. However, downregulation of miR-154 had no effect on erythropoiesis indexes compared to that observed in the control group. In conclusion, the data presented here for the first time demonstrate that expression modulation of miR-451 and miR-150 could be an efficient alternative to stimulatory cytokines for CD133+ differentiation into erythroid lineage. Modulation of erythropoiesis in stem cells via miRNA holds promising potential for vascular tissue engineering and regenerative medicine applications.

Keywords

microRNAs miR-451 miR-150 CD133+ hematopoietic stem cells Erythroid differentiation Stimulatory cytokines 

Notes

Acknowledgments

This study was performed at the TarbiatModares University and supported by the Graduate Studies Office. The authors are thankful to all staffs of Stem cell Technology Research center and Department of hematology at TarbiatModares University for their support.

Conflicts of interest

The authors indicate no potential conflicts of interest.

References

  1. 1.
    Cullen, B. R. (2004). Virus Research, 102, 3–9.CrossRefGoogle Scholar
  2. 2.
    Bushati, N., & Cohen, S. M. (2007). Annual Review of Cell and Developmental Biology, 23, 175–205.CrossRefGoogle Scholar
  3. 3.
    Huang, Y., Shen, X. J., Zou, Q., Wang, S. P., Tang, S. M., & Zhang, G. Z. (2011). Journal of Physiology and Biochemistry, 67, 129–139.CrossRefGoogle Scholar
  4. 4.
    Babashah, S., & Soleimani, M. (2011). European Journal of Cancer, 47, 1127–1137.CrossRefGoogle Scholar
  5. 5.
    He, L., & Hannon, G. J. (2004). Nature Reviews. Genetics, 5, 522–531.CrossRefGoogle Scholar
  6. 6.
    Filipowicz, W., Bhattacharyya, S. N., & Sonenberg, N. (2008). Nature Reviews. Genetics, 9, 102–114.CrossRefGoogle Scholar
  7. 7.
    Nilsen, T. W. (2007). Trends in Genetics : TIG, 23, 243–249.CrossRefGoogle Scholar
  8. 8.
    Georgantas, R. W., 3rd, Hildreth, R., Morisot, S., Alder, J., Liu, C. G., Heimfeld, S., Calin, G. A., Croce, C. M., & Civin, C. I. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 2750–2755.CrossRefGoogle Scholar
  9. 9.
    Chen, C. Z., & Lodish, H. F. (2005). Seminars in Immunology, 17, 155–165.CrossRefGoogle Scholar
  10. 10.
    Shi, B., Prisco, M., Calin, G., Liu, C. G., Russo, G., Giordano, A., & Baserga, R. (2006). Journal of Cellular Physiology, 207, 706–710.CrossRefGoogle Scholar
  11. 11.
    Garzon, R., Pichiorri, F., Palumbo, T., Iuliano, R., Cimmino, A., Aqeilan, R., Volinia, S., Bhatt, D., Alder, H., Marcucci, G., Calin, G. A., Liu, C. G., Bloomfield, C. D., Andreeff, M., & Croce, C. M. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 5078–5083.CrossRefGoogle Scholar
  12. 12.
    Zhan, M., Miller, C. P., Papayannopoulou, T., Stamatoyannopoulos, G., & Song, C. Z. (2007). Experimental Hematology, 35, 1015–1025.CrossRefGoogle Scholar
  13. 13.
    Garzon, R., & Croce, C. M. (2008). Current Opinion in Hematology, 15, 352–358.CrossRefGoogle Scholar
  14. 14.
    Merkerova, M., Belickova, M., & Bruchova, H. (2008). European Journal of Haematology, 81, 304–310.CrossRefGoogle Scholar
  15. 15.
    Felli, N., Fontana, L., Pelosi, E., Botta, R., Bonci, D., Facchiano, F., Liuzzi, F., Lulli, V., Morsilli, O., Santoro, S., Valtieri, M., Calin, G. A., Liu, C. G., Sorrentino, A., Croce, C. M., & Peschle, C. (2005). Proceedings of the National Academy of Sciences of the United States of America, 102, 18081–18086.CrossRefGoogle Scholar
  16. 16.
    Cantor, A. B., & Orkin, S. H. (2002). Oncogene, 21, 3368–3376.CrossRefGoogle Scholar
  17. 17.
    Scicchitano, M. S., McFarland, D. C., Tierney, L. A., Narayanan, P. K., & Schwartz, L. W. (2003). Experimental Hematology, 31, 760–769.CrossRefGoogle Scholar
  18. 18.
    Goh, S. H., Josleyn, M., Lee, Y. T., Danner, R. L., Gherman, R. B., Cam, M. C., & Miller, J. L. (2007). Physiological Genomics, 30, 172–178.CrossRefGoogle Scholar
  19. 19.
    Yang, G. H., Wang, F., Yu, J., Wang, X. S., Yuan, J. Y., & Zhang, J. W. (2009). Journal of Cellular Biochemistry, 107, 548–556.CrossRefGoogle Scholar
  20. 20.
    Havelange, V., & Garzon, R. (2010). American Journal of Hematology, 85, 935–942.CrossRefGoogle Scholar
  21. 21.
    Lawrie, C. H., Jr. (2010). Journal of Haematology, 150, 144–151.Google Scholar
  22. 22.
    Choong, M. L., Yang, H. H., & McNiece, I. (2007). Experimental Hematology, 35, 551–564.CrossRefGoogle Scholar
  23. 23.
    Lu, J., Guo, S., Ebert, B. L., Zhang, H., Peng, X., Bosco, J., Pretz, J., Schlanger, R., Wang, J. Y., Mak, R. H., Dombkowski, D. M., Preffer, F. I., Scadden, D. T., & Golub, T. R. (2008). Developmental Cell, 14, 843–853.CrossRefGoogle Scholar
  24. 24.
    Masaki, S., Ohtsuka, R., Abe, Y., Muta, K., & Umemura, T. (2007). Biochemical and Biophysical Research Communications, 364, 509–514.CrossRefGoogle Scholar
  25. 25.
    Nakamura, Y. (2008). Biotechnology & Genetic Engineering Reviews, 25, 187–201.CrossRefGoogle Scholar
  26. 26.
    Neildez-Nguyen, T. M., Wajcman, H., Marden, M. C., Bensidhoum, M., Moncollin, V., Giarratana, M. C., Kobari, L., Thierry, D., & Douay, L. (2002). Nature Biotechnology, 20, 467–472.CrossRefGoogle Scholar
  27. 27.
    Cook, M. S., & Blelloch, R. (2013). Current Topics in Developmental Biology, 102, 159–205.CrossRefGoogle Scholar
  28. 28.
    Siatecka, M., & Bieker, J. J. (2011). Blood, 118, 2044–2054.CrossRefGoogle Scholar
  29. 29.
    Dore, L. C., & Crispino, J. D. (2011). Blood, 118, 231–239.CrossRefGoogle Scholar
  30. 30.
    Mancini, E., Sanjuan-Pla, A., Luciani, L., Moore, S., Grover, A., Zay, A., Rasmussen, K. D., Luc, S., Bilbao, D., O'Carroll, D., Jacobsen, S. E., & Nerlov, C. (2012). The EMBO Journal, 31, 351–365.CrossRefGoogle Scholar
  31. 31.
    Bruchova, H., Yoon, D., Agarwal, A. M., Mendell, J., & Prchal, J. T. (2007). Experimental Hematology, 35, 1657–1667.CrossRefGoogle Scholar
  32. 32.
    Bruchova-Votavova, H., Yoon, D., & Prchal, J. T. (2010). Leukemia and Lymphoma, 51, 686–693.CrossRefGoogle Scholar
  33. 33.
    Chen, K., Liu, J., Heck, S., Chasis, J. A., An, X., & Mohandas, N. (2009). Proceedings of the National Academy of Sciences of the United States of America, 106, 17413–17418.CrossRefGoogle Scholar
  34. 34.
    Patrick, D. M., Zhang, C. C., Tao, Y., Yao, H., Qi, X., Schwartz, R. J., Jun-Shen Huang, L., & Olson, E. N. (2010). Genes and Development, 24, 1614–1619.CrossRefGoogle Scholar
  35. 35.
    Olivier, E. N., Qiu, C., Velho, M., Hirsch, R. E., & Bouhassira, E. E. (2006). Experimental Hematology, 34, 1635–1642.CrossRefGoogle Scholar
  36. 36.
    Fujimi, A., Matsunaga, T., Kobune, M., Kawano, Y., Nagaya, T., Tanaka, I., Iyama, S., Hayashi, T., Sato, T., Miyanishi, K., Sagawa, T., Sato, Y., Takimoto, R., Takayama, T., Kato, J., Gasa, S., Sakai, H., Tsuchida, E., Ikebuchi, K., Hamada, H., & Niitsu, Y. (2008). International Journal of Hematology, 87, 339–350.CrossRefGoogle Scholar
  37. 37.
    Ma, F., Ebihara, Y., Umeda, K., Sakai, H., Hanada, S., Zhang, H., Zaike, Y., Tsuchida, E., Nakahata, T., Nakauchi, H., & Tsuji, K. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 13087–13092.CrossRefGoogle Scholar
  38. 38.
    Anstee, D. J. (2010). Transfusion Clinique et Biologique, 17, 104–109.CrossRefGoogle Scholar
  39. 39.
    Giarratana, M. C., Kobari, L., Lapillonne, H., Chalmers, D., Kiger, L., Cynober, T., Marden, M. C., Wajcman, H., & Douay, L. (2005). Nature Biotechnology, 23, 69–74.CrossRefGoogle Scholar
  40. 40.
    Tsuchida, E. (1994). The Japanese Journal of Clinical Hematology, 35, 439–445.Google Scholar
  41. 41.
    Chang, T. M. (2000). Clinical Haematology, 13, 651–667.Google Scholar
  42. 42.
    Lippi, G., Montagnana, M., & Franchini, M. (2011). European Journal of Internal Medicine, 22, 16–19.CrossRefGoogle Scholar
  43. 43.
    Kaufman, D. S. (2009). Blood, 114, 3513–3523.CrossRefGoogle Scholar
  44. 44.
    Mountford, J., Olivier, E., & Turner, M. (2010). British Journal of Haematology, 149, 22–34.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fatemeh Kouhkan
    • 1
  • Maryam Hafizi
    • 2
  • Naser Mobarra
    • 5
  • Majid Mossahebi-Mohammadi
    • 3
  • Shahin Mohammadi
    • 4
  • Mehrdad Behmanesh
    • 6
  • Mina Soufi Zomorrod
    • 3
  • Shaban Alizadeh
    • 7
  • Reyhaneh Lahmy
    • 6
  • Morteza Daliri
    • 8
    Email author
  • Masoud Soleimani
    • 3
    Email author
  1. 1.Department of Molecular Biology and Genetic EngineeringStem Cell Technology Research CenterTehranIran
  2. 2.Department of Stem Cell BiologyStem Cell Technology Research CenterTehranIran
  3. 3.Department of Hematology, School of Medical SciencesTarbiat Modares UniversityTehranIran
  4. 4.Emam Sajed HospitalYasuj University of Medical SciencesYasujIran
  5. 5.Department of Clinical Biochemistry, School of MedicineTehran University of Medical SciencesTehranIran
  6. 6.Department of Genetics, Faculty of Biological SciencesTarbiat Modares UniversityTehranIran
  7. 7.Department of Hematology, Allied Medical SchoolTehran University of Medical SciencesTehranIran
  8. 8.National Institute of Genetic Engineering and BiotechnologyTehranIran

Personalised recommendations