Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 2, pp 1121–1130 | Cite as

Cultivation of Chlorella vulgaris in Dairy Wastewater Pretreated by UV Irradiation and Sodium Hypochlorite

  • Lei Qin
  • Qing Shu
  • Zhongming Wang
  • Changhua Shang
  • Shunni Zhu
  • Jingliang Xu
  • Rongqing Li
  • Liandong Zhu
  • Zhenhong YuanEmail author
Article

Abstract

There is potential in the utilization of microalgae for the purification of wastewater as well as recycling the resource in the wastewater to produce biodiesel. The large-scale cultivation of microalgae requires pretreatment of the wastewater to eliminate bacteria and protozoa. This procedure is costly and complex. In this study, two methods of pretreatment, UV irradiation, and sodium hypochlorite (NaClO), in various doses and concentrations, were tested in the dairy wastewater. Combining the efficiency of biodiesel production, we proposed to treat the dairy wastewater with NaClO in the concentration of 30 ppm. In this condition, The highest biomass productivity and lipid productivity of Chlorella vulgaris reached 0.450 g L−1 day−1 and 51 mg L−1 day−1 after a 4-day cultivation in the dairy wastewater, respectively.

Keywords

Dairy Wastewater Chlorella vulgaris UV Irradiation Sodium Hypochlorite Pretreatment Large-Scale Cultivation 

Notes

Acknowledgments

The authors are grateful for the support of the National Key Technology R&D Program of the 12th Five-year Plan of China (Grant No. 2011BAD14B03), the National High Technology Research and Development Program of China (Grant No. 2013AA065803), the National Natural Science Foundation of China (Grant No. 31100189), the Open Project of Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology (Grant No. JSBEET1223), and the State Key Laboratory of Freshwater Ecology and Biotechnology (Grant No. 2013FB14).

References

  1. 1.
    Du, Y., Wang, Y., Peng, G., Su, Z., Xu, M., Feng, W., et al. (2011). Reducing COD and BOD, as well as producing triacylglycerol by LDS5 grown in CTMP effluent. Bioresources, 6(3), 3505–3514.Google Scholar
  2. 2.
    Markou, G., Angelidaki, I., & Georgakakis, D. (2012). Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631–645.CrossRefGoogle Scholar
  3. 3.
    Ghasemi, Y., Rasoul-Amini, S., Naseri, A. T., Montazeri-Najafabady, N., Mobasher, M. A., & Dabbagh, F. (2012). Microalgae biofuel potentials (review). Prikladnaia Biokhimiia i Mikrobiologiia, 48(2), 150–168.Google Scholar
  4. 4.
    Brennan, L., & Owende, P. (2010). Biofuels from microalgae-a review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577.CrossRefGoogle Scholar
  5. 5.
    Bhola, V., Desikan, R., Santosh, S. K., Subburamu, K., Sanniyasi, E., & Bux, F. (2010). Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. Journal of Bioscience and Bioengineering, 111(3), 377–382.CrossRefGoogle Scholar
  6. 6.
    Acien, F. G., Fernandez, J. M., Magan, J. J., & Molina, E. (2012). Production cost of a real microalgae production plant and strategies to reduce it. Biotechnology Advances, 30(6), 1344–1353.CrossRefGoogle Scholar
  7. 7.
    Zhu, L., Wang, Z., Shu, Q., Takala, J., Hiltunen, E., Feng, P., et al. (2013). Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Bioresource Technology, 47(13), 4294–4302.Google Scholar
  8. 8.
    Olguín, E. J., Galicia, S., Mercado, G., & Pérez, T. (2003). Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. Journal of Applied Phycology, 15(2–3), 249–257.CrossRefGoogle Scholar
  9. 9.
    Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25.CrossRefGoogle Scholar
  10. 10.
    Samorì, G., Samorì, C., Guerrini, F., & Pistocchi, R. (2012). Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I. Water Research, 47(2), 791–801.CrossRefGoogle Scholar
  11. 11.
    Dalrymple, O. K., Halfhide, T., Udom, I., Gilles, B., Wolan, J., Zhang, Q., et al. (2013). Wastewater use in algae production for generation of renewable resources: a review and preliminary results. Aquatic Biosystem, 9(1), 2.CrossRefGoogle Scholar
  12. 12.
    de-Bashan, L. E., & Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611–1627.CrossRefGoogle Scholar
  13. 13.
    Mallick, N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals, 15(4), 377–390.CrossRefGoogle Scholar
  14. 14.
    Wang, H., Xiong, H., Hui, Z., & Zeng, X. (2012). Mixotrophic cultivation of Chlorella pyrenoidosa with diluted primary piggery wastewater to produce lipids. Bioresource Technology, 104, 215–220.CrossRefGoogle Scholar
  15. 15.
    Ji, M. K., Kim, H. C., Sapireddy, V. R., Yun, H. S., Abou-Shanab, R. A. I., Choi, J., et al. (2012). Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Applied Microbiology and Biotechnology, 97(6), 2701–2710.CrossRefGoogle Scholar
  16. 16.
    Prajapati, S. K., Kaushik, P., Malik, A., & Vijay, V. K. (2013). Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresource Technology, 135, 23–28.CrossRefGoogle Scholar
  17. 17.
    Prajapati, S. K., Kaushik, P., Malik, A., & Vijay, V. K. (2013). Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: possibilities and challenges. Biotechnology Advances. doi: 10.1016/j.biotechadv.2013.06.005.Google Scholar
  18. 18.
    Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry—a critical review. Journal of the Science of Food and Agriculture, 80(6), 637–645.CrossRefGoogle Scholar
  19. 19.
    Kawachi, M., & Noël, M. H. (2005). Sterilization and sterile technique in algal culturing techniques. Amsterdam: Elsevier Academic Press.Google Scholar
  20. 20.
    Mutanda, T., Karthikeyan, S., & Bux, F. (2011). The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Applied Biochemistry and Biotechnology, 164(7), 1126–1138.CrossRefGoogle Scholar
  21. 21.
    Rippka, R., Deruelles, J., Waterbury, J., Herdman, M., & Stanier, R. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Journal of General Microbiology, 111(1), 1–61.CrossRefGoogle Scholar
  22. 22.
    Bigogno, C., Khozin-Goldberg, I., Boussiba, S., Vonshak, A., & Cohen, Z. (2002). Lipid and fatty acid composition of the green oleaginous alga Parietochloris incisa, the richest plant source of arachidonic acid. Phytochemistry, 60(5), 497–503.CrossRefGoogle Scholar
  23. 23.
    Slover, H. T., & Lanza, E. (1979). Quantitative analysis of food fatty acids by capillary gas chromatography. Journal of the American Oil Chemists′ Society, 56(12), 933–943.CrossRefGoogle Scholar
  24. 24.
    Sforza, E., Cipriani, R., Morosinotto, T., Bertucco, A., & Giacometti, G. M. (2012). Excess CO2 supply inhibits mixotrophic growth of Chlorella protothecoides and Nannochloropsis salina. Bioresource Technology, 104, 523–529.CrossRefGoogle Scholar
  25. 25.
    Woertz, I. (2007). Lipid productivity of Algae grown on dairy wastewater as a possible feedstock for Biodiesel. California Polytechnic University pp. 57–58.Google Scholar
  26. 26.
    Wang, L., Li, Y. C., Chen, P., Min, M., Chen, Y. F., Zhu, J., et al. (2010). Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresource Technology, 101(8), 2623–2628.CrossRefGoogle Scholar
  27. 27.
    Song, Y., Hahn, H. H., & Hoffmann, E. (2002). Effect of solution conditions on the precipitation of phosphate for recovery: a thermal dynamic evaluation. Chemosphere, 48(10), 1029–1034.CrossRefGoogle Scholar
  28. 28.
    Gonzalez, L. E., Canizares, R. O., & Baena, S. (1997). Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresource Technology, 60(3), 259–262.CrossRefGoogle Scholar
  29. 29.
    Peng, Y. J., Li, C., & Zhang, D. W. (2011). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, 102(1), 101–105.CrossRefGoogle Scholar
  30. 30.
    Markou, G., Chatzipavlidis, I., & Georgakakis, D. (2012). Cultivation of Arthrospira (Spirulina) platensis in olive-oil mill wastewater treated with sodium hypochlorite. Bioresource Technology, 112, 234–241.CrossRefGoogle Scholar
  31. 31.
    Lika, K., & Papadakis, I. A. (2009). Modeling the biodegradation of phenolic compounds by microalgae. Journal of Sea Research, 62(2–3), 135–146.CrossRefGoogle Scholar
  32. 32.
    Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P., & Del Borghi, M. (2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing Process Intensification, 48(6), 1146–1151.CrossRefGoogle Scholar
  33. 33.
    Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(11), 1115–1122.CrossRefGoogle Scholar
  34. 34.
    Dijkstra, A. J. (2006). Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. European Journal of Lipid Science and Technology, 108(3), 249–264.CrossRefGoogle Scholar
  35. 35.
    Knothe, G. (2006). Analyzing biodiesel: standards and other methods. Journal of the American Oil Chemists′ Society, 83(10), 823–833.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Lei Qin
    • 1
  • Qing Shu
    • 1
  • Zhongming Wang
    • 1
  • Changhua Shang
    • 1
  • Shunni Zhu
    • 1
  • Jingliang Xu
    • 1
  • Rongqing Li
    • 2
  • Liandong Zhu
    • 3
  • Zhenhong Yuan
    • 1
    Email author
  1. 1.Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable EnergyChinese Academy of SciencesGuangzhouChina
  2. 2.Jiangsu Key Laboratory for Biomass-based Energy and Enzyme TechnologyHuaiyin Normal UniversityHuai’anChina
  3. 3.Faculty of TechnologyUniversity of Vaasa and Vaasa Energy InstituteVaasaFinland

Personalised recommendations