Advertisement

Applied Biochemistry and Biotechnology

, Volume 172, Issue 2, pp 713–726 | Cite as

Population Analysis of Mesophilic Microbial Fuel Cells Fed with Carbon Monoxide

  • A. Hussain
  • G. Bruant
  • P. Mehta
  • V. Raghavan
  • B. Tartakovsky
  • S. R. GuiotEmail author
Article

Abstract

Electricity generation in a microbial fuel cell (MFC) fed with carbon monoxide (CO) has been recently demonstrated; however, the microbial ecology of this system has not yet been described. In this work the diversity of the microbial community present at the anode of CO-fed MFCs was studied by performing denaturing gradient gel electrophoresis (DGGE) and high-throughput sequencing (HTS) analyses. HTS indicated a significant increase of the archaeal genus Methanobacterium and of the bacterial order Clostridiales, notably including Clostridium species, while in both MFCs DGGE identified members of the bacterial genera Geobacter, Desulfovibrio, and Clostridium, and of the archaeal genera Methanobacterium, Methanofollis, and Methanosaeta. In particular, the presence of Geobacter sulfurreducens was identified. Tolerance of G. sulfurreducens to CO was confirmed by growing G. sulfurreducens with acetate under a 100 % CO atmosphere. This observation, along with the identification of acetogens, supports the hypothesis of the two-step process in which CO is converted to acetate by the carboxidotrophic Bacteria and acetate is then oxidized by CO-tolerant electricigenic Bacteria to produce electricity.

Keywords

MFC Carbon monoxide Geobacter sulfurreducens 

Notes

Acknowledgments

The authors are grateful to the National Research Council of Canada (NRC publication no. 53232), the ecoENERGY Technology Initiative of the Office of Energy Research and Development (OERD) of Natural Resources Canada (project I12.011) and the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. The authors also wish to thank C.W. Greer for his enlightening comments on the HTS results.

References

  1. 1.
    Klasson, K., Ackerson, C., Clausen, E., & Gaddy, J. (1992). International Journal of Hydrogen Energy, 17, 281–288.CrossRefGoogle Scholar
  2. 2.
    Song, C. (2002). Catalysis today, 77, 17–49.CrossRefGoogle Scholar
  3. 3.
    Hussain, A., Guiot, S. R., Mehta, P., Raghavan, V., & Tartakovsky, B. (2011). Applied Microbiology and Biotechnology, 90, 827–836.CrossRefGoogle Scholar
  4. 4.
    Kim, D., & Chang, I. (2009). Bioresource Technology, 100, 4527–4530.CrossRefGoogle Scholar
  5. 5.
    Mehta, P., Hussain, A., Raghavan, V., Neburchilov, V., Wang, H., & Tartakovsky, B. (2010). Enzyme and Microbial Technology, 46, 450–455.CrossRefGoogle Scholar
  6. 6.
    Hussain, A., Tartakovsky, B., Guiot, S. R., & Raghavan, V. (2011). Bioresource Technology, 102, 10898–10906.CrossRefGoogle Scholar
  7. 7.
    Neburchilov, V., Mehta, P., Hussain, A., Wang, H., Guiot, S. R., & Tartakovsky, B. (2011). International Journal of Hydrogen Energy, 36, 11929–11935.CrossRefGoogle Scholar
  8. 8.
    Lovley, D. R. (2006). Current Opinions in Biotechnology, 17, 327–332.CrossRefGoogle Scholar
  9. 9.
    Tartakovsky, B., Manuel, M. F., Neburchilov, V., Wang, H., & Guiot, S. R. (2008). Journal of Power Sources, 182, 291–297.CrossRefGoogle Scholar
  10. 10.
    Guiot, S. R., Cimpoia, R., & Carayon, G. (2011). Environmental Science and Technology, 45, 2006–2012.CrossRefGoogle Scholar
  11. 11.
    Tartakovsky, B., Manuel, M. F., Beaumier, D., Greer, C. W., & Guiot, S. R. (2001). Biotechnology and Bioengineering, 73, 476–483.Google Scholar
  12. 12.
    Baker, G. C., Smith, J. J., & Cowan, D. A. (2003). Journal of Microbiological Methods, 55, 541–555.CrossRefGoogle Scholar
  13. 13.
    Galand, P. E., Casamayor, E. O., Kirchman, D. L., Potvin, M., & Lovejoy, C. (2009). The ISME Journal, 3, 860–869.CrossRefGoogle Scholar
  14. 14.
    Wang, Q., Garrity, M., Tiedje, J., & Cole, J. (2007). Applied and Environmental Microbiology, 73, 5261–5267.CrossRefGoogle Scholar
  15. 15.
    Claesson, M. J., O’Sullivan, O., Wang, Q., Nikkilä, J., Marchesi, J. R., Smidt, H., et al. (2009). PLoS ONE, 4, e6669.CrossRefGoogle Scholar
  16. 16.
    Logan, B. (2008). Microbial fuel cells. Hoboken: Wiley.Google Scholar
  17. 17.
    Bond, D. R., & Lovley, D. R. (2003). Applied and Environmental Microbiology, 69, 1548–1555.CrossRefGoogle Scholar
  18. 18.
    Ragsdale, S. W. (2004). Critical Reviews in Biochemistry and Molecular Biology, 39, 165–195.CrossRefGoogle Scholar
  19. 19.
    Methe, B. A., Nelson, K. E., Eisen, J. A., Paulsen, I. T., Nelson, W., Heidelberg, J. F., et al. (2003). Science, 302, 1967–1969.CrossRefGoogle Scholar
  20. 20.
    Preez, L., & Maree, J. (1994). Water science and technology, 30, 275–285.Google Scholar
  21. 21.
    Houten, B., Meulepas, R., Doesburg, W., Smidt, H., Muyzer, G., & Stams, A. (2009). International Journal of Systematic and Evolutionary Microbiology, 59, 229–233.CrossRefGoogle Scholar
  22. 22.
    Brandis, A., & Thauer, R. K. (1981). Journal of General Microbiology, 126, 249–252.Google Scholar
  23. 23.
    Bernalier, A., Willems, A., Leclerc, M., Rochet, V., & Collins, M. D. (1996). Archives of Microbiology, 166, 176–183.CrossRefGoogle Scholar
  24. 24.
    Lens, P., Vallerol, M., Esposito, G., & Zandvoort, M. (2002). Reviews in Environmental Science and Bio/Technology, 1, 311–325.CrossRefGoogle Scholar
  25. 25.
    Sipma, J., Henstra, A. M., Parshina, S. N., Lens, P. N. L., Lettinga, G., & Stams, A. J. M. (2006). Critical Reviews in Biotechnology, 26, 41–65.CrossRefGoogle Scholar
  26. 26.
    Houten, B., Roest, K., Tzeneva, V., Dijkman, H., Smidt, H., & Stams, A. (2006). Water Research, 40, 553–560.CrossRefGoogle Scholar
  27. 27.
    Imachi, H., Aoi, K., Tasumi, E., Saito, Y., Yamanaka, Y., Saito, Y., et al. (2011). The ISME Journal, 1, 1–13.Google Scholar
  28. 28.
    Wu, W.-M., Hickey, R. F., Jain, M. K., & Zeikus, J. G. (1993). Archives of Microbiology, 159, 57–65.CrossRefGoogle Scholar
  29. 29.
    Klasson, K. T., Cowger, J. P., Ko, C. W., Vega, J. L., Clausen, E. C., & Gaddy, J. L. (1990). Applied Biochemistry and Biotechnology, 24–25, 317–328.CrossRefGoogle Scholar
  30. 30.
    Patel, G. B., & Sprott, G. D. (1990). International Journal of Systematic Bacteriology, 40, 79–82.CrossRefGoogle Scholar
  31. 31.
    Parshina, S. N., Sipma, J., Henstra, A. M., & Stams, A. J. M. (2010). International Journal of Microbiology, 25, 1–9.CrossRefGoogle Scholar
  32. 32.
    Parshina, S. N., Sipma, J., Nakashimada, Y., Henstra, A. M., Smidt, H., Lysenko, A. M., et al. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 2159–2165.CrossRefGoogle Scholar
  33. 33.
    Du, Z., Li, H. & Gu, T. Biotechnology Advances, 25, 464–482.Google Scholar
  34. 34.
    Fonknechten, N., Chaussonnerie, S., Tricot, S., Lajus, A., Andreesen, J., Perchat, N., et al. (2010). BMC Genomics, 11, 555.CrossRefGoogle Scholar
  35. 35.
    Oelgeschlager, E., & Rother, M. (2008). Archives of Microbiology, 190, 257–269.CrossRefGoogle Scholar
  36. 36.
    Rabaey, K., & Verstraete, W. (2005). Trends in Biotechnology, 23, 291–298.CrossRefGoogle Scholar
  37. 37.
    Park, H. S., Kim, B. H., Kim, H. S., Kim, H. J., Kim, G. T., Kim, M., et al. (2001). Anaerobe, 7, 297–306.CrossRefGoogle Scholar
  38. 38.
    Hawkes, F. R., Dinsdale, R., Hawkes, D. L., & Hussy, I. (2002). International Journal of Hydrogen Energy, 27, 1339–1347.CrossRefGoogle Scholar
  39. 39.
    Kotay, S. M., & Das, D. (2008). International Journal of Hydrogen Energy, 33, 258–263.CrossRefGoogle Scholar
  40. 40.
    Logan, B. E. (2009). Nature Reviews Microbiology, 7, 375–381.CrossRefGoogle Scholar
  41. 41.
    Lovley, D. R. (1993). Annual Review of Microbiology, 47, 263–290.CrossRefGoogle Scholar
  42. 42.
    Kim, J. R., Min, B., & Logan, B. E. (2005). Applied Microbiology and Biotechnology, 68, 23–30.CrossRefGoogle Scholar
  43. 43.
    Michaelidou, U., ter Heijne, A., Euverink, G. J. W., Hamelers, H. V. M., Stams, A. J. M., & Geelhoed, J. S. (2011). Applied and Environmental Microbiology, 77, 1069–1075.CrossRefGoogle Scholar
  44. 44.
    Jung, S., & Regan, J. (2007). Applied Microbiology and Biotechnology, 77, 393–402.CrossRefGoogle Scholar
  45. 45.
    Lefebvre, O., Ha Nguyen, T. T., Al-Mamun, A., Chang, I. S., & Ng, H. Y. (2010). Journal of Applied Microbiology, 109, 839–850.CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada 2013

Authors and Affiliations

  • A. Hussain
    • 1
    • 2
  • G. Bruant
    • 1
  • P. Mehta
    • 1
  • V. Raghavan
    • 2
  • B. Tartakovsky
    • 1
  • S. R. Guiot
    • 1
    Email author
  1. 1.Bioengineering Laboratory, Energy, Mining and EnvironmentNational Research Council of CanadaMontrealCanada
  2. 2.Department of Bioresource EngineeringMcGill UniversitySte-Anne-de-BellevueCanada

Personalised recommendations