Applied Biochemistry and Biotechnology

, Volume 172, Issue 2, pp 672–686 | Cite as

Purification and Characterization of a Glucosamine-Binding Antifungal Lectin from Phaseolus vulgaris cv. Chinese Pinto Beans with Antiproliferative Activity Towards Nasopharyngeal Carcinoma Cells

  • Andrew Si Wo Ang
  • Randy Chi Fai Cheung
  • Xiuli Dan
  • Yau Sang Chan
  • Wenliang Pan
  • Tzi Bun Ng


A lectin has successfully been isolated from Phaseolus vulgaris cv. Chinese pinto bean using affinity chromatography, ion exchange chromatography, and gel filtration in succession, with a 15.4-fold purification. Investigation of its characteristics revealed that Chinese pinto bean lectin (CPBL) was a 58-kDa dimeric glucosamine-binding protein. Its Mg2+-dependent hemagglutinating activity was stable at pH 7–8 and at or below 60 °C. When the purified lectin was tested against six fungal species including Phyllosticta citriasiana, Magnaporthe grisea, Bipolans maydis, Valsa mali, Mycosphaerella arachidicola, and Setosphaeria turcica, only the mycelial growth of V. mali was reduced by 30.6 % by the lectin at 30 μM. The lectin did not exert any discernible antiproliferative effects on breast cancer MCF-7 cells, but was able to suppress proliferation of nasopharyngeal carcinoma HONE-1 cells, with an IC50 of 17.3 μM, as revealed by the MTT assay. Since few plant lectins demonstrate antifungal activity against V. mali, and not many others have inhibitory effects on HONE-1 cells, CPBL is a distinctive lectin which may be exploited for development into an agent against V. mali and HONE-1 cells.


Phaseolus vulgaris Antifungal Antitumor Lectin Nasopharyngeal carcinomas 


  1. 1.
    Liu, B., Bian, H. J., & Bao, J. K. (2010). Plant lectins: potential antineoplastic drugs from bench to clinic. Cancer Letters, 287(1), 1–12.CrossRefGoogle Scholar
  2. 2.
    Liener, I. E., Sharon, N., & Goldstein, I. J. (1986). The lectins: properties, functions and applications in biology and medicine. Orlando: Academic.Google Scholar
  3. 3.
    Sumner, J. B., & Howell, S. F. (1936). Identification of hemagglutinin of jack bean with concanavalin A. Journal of Bacteriology, 32(2), 227–237.Google Scholar
  4. 4.
    Lam, S. K., & Ng, T. B. (2011). Lectins: production and practical applications. Applied Microbiology and Biotechnology, 89(1), 45–55.CrossRefGoogle Scholar
  5. 5.
    Yan, Q., Jiang, Z., Yang, S., Deng, W., & Han, L. (2005). A novel homodimeric lectin from Astragalus mongholicus with antifungal activity. Archives of Biochemistry and Biophysics, 442, 72–81.CrossRefGoogle Scholar
  6. 6.
    Bhat, G. G., Shetty, K. N., Nagre, N. N., Neekhra, V. V., Lingaraju, S., Bhat, R. S., Inamdar, S. R., Suguna, K., & Swamy, B. M. (2010). Purification, characterization and molecular cloning of a monocot mannose-binding lectin from Remusatia vivipara with nematicidal activity. Glycoconjugate Journal, 27, 309–320.CrossRefGoogle Scholar
  7. 7.
    Lam, S. K., & Ng, T. B. (2009). Novel galactonic acid-binding hexameric lectin from Hibiscus mutabilis seeds with antiproliferative and potent HIV-1 reverse transcriptase inhibitory activities. Acta Biochimica Polonica, 56, 649–654.Google Scholar
  8. 8.
    Chan, Y. S., Wong, J. H., Fang, E. F., Pan, W., & Ng, T. B. (2012). Isolation of a glucosamine binding leguminous lectin with mitogenic activity towards splenocytes and anti-proliferative activity towards tumor cells. PLoS One, 7(6).Google Scholar
  9. 9.
    Chan, Y. S., Wong, J. H., Fang, E. F., Pan, W., & Ng, T. B. (2013). A hemagglutinin from northeast red beans with immunomodulatory activity and anti-proliferative and apoptosis-inducing activities toward tumor cells. Protein and Peptide Letters, 20, 1159–69.CrossRefGoogle Scholar
  10. 10.
    Fang, E. F., Pan, W. L., Wong, J. H., Chan, Y. S., Ye, X. J., & Ng, T. B. (2011). A new Phaseolus vulgaris lectin induces selective toxicity on human liver carcinoma Hep G2 cells. Archives of toxicology, 85, 1551–63.CrossRefGoogle Scholar
  11. 11.
    Lam, S. K., & Ng, T. B. (2010). Isolation and characterization of a French bean hemagglutinin with antitumor, antifungal, and anti-HIV-1 reverse transcriptase activities and an exceptionally high yield. Phytomedicine, 17, 457–62.CrossRefGoogle Scholar
  12. 12.
    Wong, J. H., Wan, C. T., & Ng, T. B. (2010). Characterisation of a haemagglutinin from Hokkaido red bean (Phaseolus vulgaris cv. Hokkaido red bean). Journal of the Science of Food and Agriculture, 90, 70–77.CrossRefGoogle Scholar
  13. 13.
    Fang, E. F., Lin, P., Wong, J. H., Tsao, S. W., & Ng, T. B. (2010). A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of Phaseolus vulgaris cv. extralong autumn purple bean. Journal of Agricultural and Food Chemistry, 58, 2221–2229.CrossRefGoogle Scholar
  14. 14.
    Sharma, A., Ng, T. B., Wong, J. H., & Lin, P. (2009). Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi beans). Journal of Biomedicine and Biotechnology, 2009, 929568.CrossRefGoogle Scholar
  15. 15.
    Cheung, R. C., Leung, H. H., Pan, W. L., & Ng, T. B. (2013). A calcium ion-dependent dimeric bean lectin with antiproliferative activity toward human breast cancer MCF-7 cells. Protein Journal, 32, 208–15.CrossRefGoogle Scholar
  16. 16.
    Lyu, S. Y., Choi, S. H., & Park, W. B. (2002). Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53. Archives of Pharmacal Research, 25, 93–101.CrossRefGoogle Scholar
  17. 17.
    Plattner, V. E., Wagner, M., Ratzinger, G., Gabor, F., & Wirth, M. (2008). Targeted drug delivery: binding and uptake of plant lectins using human 5637 bladder cancer cells. European Journal of Pharmaceutics and Biopharmaceutics, 70, 572–576.CrossRefGoogle Scholar
  18. 18.
    Lei, H. Y., & Chang, C. P. (2007). Induction of autophagy by concanavalin A and its application in anti-tumour therapy. Autophagy, 3, 402–404.Google Scholar
  19. 19.
    Liu, B., Cheng, Y., Bian, H. J., & Bao, J. K. (2009). Molecular mechanisms of Polygonatum cyrtonema lectin induced apoptosis and autophagy in cancer cells. Autophagy, 5, 253–255.CrossRefGoogle Scholar
  20. 20.
    Sa, Q., Wang, Y., Li, W., Zhang, L., & Sun, Y. (2003). The promoter of an antifungal protein gene from Gastrodia elata confers tissue-specific and fungus-inducible expression patterns and responds to both salicylic acid and jasmonic acid. Plant Cell Reports, 22(1), 79–84.CrossRefGoogle Scholar
  21. 21.
    Does, M. P., Houterman, P. M., Dekker, H. L., & Cornelissen, B. J. (1999). Processing, targeting, and antifungal activity of stinging nettle agglutinin in transgenic tobacco. Plant Physiology, 120, 421–432.CrossRefGoogle Scholar
  22. 22.
    Van Parijs, J., Broekaert, W. F., Goldstein, I. J., & Peumans, W. J. (1991). Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta, 183, 258–264.CrossRefGoogle Scholar
  23. 23.
    Broekaert, W. F., Mariën, W., Terras, F. R., De Bolle, M. F., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S. B., & Vanderleyden, J. (1992). Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry, 31, 4308–4314.CrossRefGoogle Scholar
  24. 24.
    Karasaki, Y., Tsukamoto, S., Mizusaki, K., Sugiura, T., & Gotoh, S. (2001). A garlic lectin exerted an antitumor activity and induced apoptosis in human tumor cells. Food Research International, 34, 7–13.CrossRefGoogle Scholar
  25. 25.
    Ng, T. B., Ngai, P. H., & Xia, L. (2006). An agglutinin with mitogenic and antiproliferative activities from the mushroom Flammulina velutipes. Mycologia, 98, 167–171.CrossRefGoogle Scholar
  26. 26.
    Pajic, I., Kljajic, Z., Dogovic, N., Sladic, D., Juranic, Z., & Gasic, M. J. (2002). A novel lectin from the sponge Haliclona cratera: isolation, characterization and biological activity. Comparative Biochemistry Physiology C Toxicology Pharmacology, 132, 213–221.CrossRefGoogle Scholar
  27. 27.
    Xia, L., & Ng, T. B. (2005). An antifungal protein from flageolet beans. Peptides, 26, 2397–2403.CrossRefGoogle Scholar
  28. 28.
    Lin, P., Ye, X., & Ng, T. B. (2008). Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochim Biophys Sin (Shanghai), 40, 1029–1038.CrossRefGoogle Scholar
  29. 29.
    Cheung, A. H., Wong, J. H., & Ng, T. B. (2009). Musa acuminata (Del Monte banana) lectin is a fructose-binding lectin with cytokine-inducing activity. Phytomedicine, 16, 594–600.CrossRefGoogle Scholar
  30. 30.
    Wong, J. H., & Ng, T. B. (2005). Isolation and characterization of a glucose/mannose/rhamnose-specific lectin from the knife bean Canavalia gladiate. Archives of Biochemistry and Biophysics, 439, 91–98.CrossRefGoogle Scholar
  31. 31.
    Franz, H., Ziska, P., & Kindt, A. (1981). Isolation and properties of three lectins from mistletoe (Viscum album L.). The Biochemical journal, 195, 481–4.Google Scholar
  32. 32.
    Rostock, M., Huber, R., Greiner, T., Fritz, P., Scheer, R., Schueler, J., & Fiebig, H. H. (2005). Anticancer activity of a lectin-rich mistletoe extract injected intratumorally into human pancreatic cancer xenografts. Anticancer Research, 25, 1969–75.Google Scholar
  33. 33.
    Bantel, H., Engels, I. H., Voelter, W., Schulze-Osthoff, K., & Wesselborg, S. (1999). Mistletoe lectin activates caspase-8/FLICE independently of death receptor signaling and enhances anticancer drug-induced apoptosis. Cancer research, 59, 2083–90.Google Scholar
  34. 34.
    Lyu, S. Y., Kwon, Y. J., Joo, H. J., & Park, W. B. (2004). Preparation of alginate/chitosan microcapsules and enteric coated granules of mistletoe lectin. Archives of Pharmacal Research, 27, 118–126.CrossRefGoogle Scholar
  35. 35.
    Wong, J. H., Wong, C. C., & Ng, T. B. (2006). Purification and characterization of a galactose-specific lectin with mitogenic activity from pinto beans. Biochimica et Biophysica Acta, 1760(5), 808–13.CrossRefGoogle Scholar
  36. 36.
    Matsumoto, I., & Osawa, T. (1972). The specific purification of various carbohydrate-binding hemagglutinins. Biochemical and Biophysical Research Communications, 46(5), 1810–5.CrossRefGoogle Scholar
  37. 37.
    Sela, B. A., Lis, H., Sharon, N., & Sachs, L. (1973). Isolectins from wax bean with differential agglutination of normal and transformed mammalian cells. Biochimica et Biophysica Acta, 310(1), 273–7.CrossRefGoogle Scholar
  38. 38.
    Kamemura, K., Furuichi, Y., Umekawa, H., & Takahashi, T. (1993). Purification and characterization of novel lectins from Great Northern bean, Phaseolus vulgaris L. Biochimica et Biophysica Acta, 1158(2), 181–8.CrossRefGoogle Scholar
  39. 39.
    Ye, X. Y., Ng, T. B., Tsang, P. W., & Wang, J. (2001). Isolation of a homodimeric lectin with antifungal and antiviral activities from red kidney bean (Phaseolus vulgaris) seeds. Journal of Protein Chemistry, 20(5), 367–75.CrossRefGoogle Scholar
  40. 40.
    Neth, O., Jack, D. L., Dodds, A. W., Holzel, H., Klein, N. J., & Turner, M. W. (2000). Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infection and Immunity, 68, 688–693.CrossRefGoogle Scholar
  41. 41.
    Persson, A., Chang, D., & Crouch, E. (1990). Surfactant protein D is a divalent cation-dependent carbohydrate-binding protein. Journal of Biological Chemistry, 265, 5755–5760.Google Scholar
  42. 42.
    Devi, S. K., Singh, S. S., Singh, S. J., Rully, H., & Singh, L. R. (2011). Purification and characterization of a magnesium ion requiring N-acetyl-d-glucosamine specific lectin from seeds of Quercus ilex L. Bioscience, Biotechnology, and Biochemistry, 75(9), 1752–7.CrossRefGoogle Scholar
  43. 43.
    Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., & De Clercq, E. (1992). The mannose-specific plant lectins from Cymbidium hybrid and Epipactis helleborine and the (N-acetylglucosamine)n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral Research, 18(2), 191–207.CrossRefGoogle Scholar
  44. 44.
    Sharon, N., & Lis, H. (1972). Lectins: cell-agglutinating and sugar-specific proteins. Science, 177(4053), 949–59.CrossRefGoogle Scholar
  45. 45.
    Lin, P., & Ng, T. B. (2008). Preparation and biological properties of a melibiose binding lectin from Bauhinia variegata seeds. Journal of Agricultural and Food Chemistry, 56(22), 10481–6.CrossRefGoogle Scholar
  46. 46.
    Wong, J. H., & Ng, T. B. (2005). Vulgarinin, a broad-spectrum antifungal peptide from haricot beans (Phaseolus vulgaris). International Journal of Biochemistry and Cell Biology, 37(8), 1626–32.CrossRefGoogle Scholar
  47. 47.
    Zhang, G., Sun, J., Wang, H., & Ng, T. B. (2010). First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine, 17(10), 775–81.CrossRefGoogle Scholar
  48. 48.
    Wang, H. X., Ng, T. B., & Ooi, V. E. C. (1998). Lectins from mushrooms. Mycological Research, 102, 897–906.CrossRefGoogle Scholar
  49. 49.
    Bohlool, B. B., & Schmidt, E. L. (1974). Lectins: a possible basis for specificity in the rhizobium-legume root nodule symbiosis. Science, 185(4147), 269–71.CrossRefGoogle Scholar
  50. 50.
    Andrade, C. A., Correia, M. T., Coelho, L. C., Nascimento, S. C., & Santos-Magalhães, N. S. (2004). Antitumor activity of Cratylia mollis lectin encapsulated into liposomes. International Journal of Pharmaceutics, 278, 435–445.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Andrew Si Wo Ang
    • 1
  • Randy Chi Fai Cheung
    • 2
  • Xiuli Dan
    • 2
  • Yau Sang Chan
    • 2
  • Wenliang Pan
    • 2
  • Tzi Bun Ng
    • 2
  1. 1.Faculty of Science, School of Life SciencesThe Chinese University of Hong KongHong KongChina
  2. 2.Faculty of Medicine, School of Biomedical SciencesThe Chinese University of Hong KongHong KongChina

Personalised recommendations