Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characterization of Biocatalysts Prepared with Thermomyces lanuginosus Lipase and Different Silica Precursors, Dried using Aerogel and Xerogel Techniques

  • 346 Accesses

  • 4 Citations


The use of lipases in industrial processes can result in products with high levels of purity and at the same time reduce pollutant generation and improve both selectivity and yields. In this work, lipase from Thermomyces lanuginosus was immobilized using two different techniques. The first involves the hydrolysis/polycondensation of a silica precursor (tetramethoxysilane (TMOS)) at neutral pH and ambient temperature, and the second one uses tetraethoxysilane (TEOS) as the silica precursor, involving the hydrolysis and polycondensation of the alkoxide in appropriate solvents. After immobilization, the enzymatic preparations were dried using the aerogel and xerogel techniques and then characterized in terms of their hydrolytic activities using a titrimetric method with olive oil and by the formation of 2-phenylethyl acetate in a transesterification reaction. The morphological properties of the materials were characterized using scanning electron microscopy, measurements of the surface area and pore size and volume, thermogravimetric analysis, and exploratory differential calorimetry. The results of the work indicate that the use of different silica precursors (TEOS or TMOS) and different drying techniques (aerogel or xerogel) can significantly affect the properties of the resulting biocatalyst. Drying with supercritical CO2 provided higher enzymatic activities and pore sizes and was therefore preferable to drying, using the xerogel technique. Thermogravimetric analysis and differential scanning calorimetry analyses revealed differences in behavior between the two biocatalyst preparations due to the compounds present.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Villeneuve, P., Muderhwa, J. M., Graille, J., & Haas, M. J. (2000). Journal of Molecular Catalysis B: Enzymatic, 9, 113–148.

  2. 2.

    Silva, R. F., & Vasconcelos, W. L. (1999). Materials Research, 2, 197–200.

  3. 3.

    Mansur, H. S., Oréfice, R. L., Vasconcelos, W. L., Silva, R. F., & Lobato, Z. P. (1999). Revista de Biotecnologia, 9, 16–18.

  4. 4.

    Uyanik, A., Sen, N., & Yilmaz, M. (2011). Bioresource Technology, 102, 4313–4318.

  5. 5.

    Wang, X., Zhou, G., Zhang, H., Du, X., Xu, Y., & Wang, C. (2011). Journal of Non-Crystalline Solids, 357, 3027–3032.

  6. 6.

    Yang, J., Liu, L., & Cao, X. (2010). Enzyme and Microbial Technology, 46, 257–261.

  7. 7.

    Soares, C. M. F., Santos, O. A. S., Castro, H. F., Moraes, F. F., & Zanin, G. M. (2004). Applied Biochemistry and Biotechnology, 113, 307–319.

  8. 8.

    Maury, S., Buisson, P., Perrard, A., & Pierre, A. C. (2004). Journal of Molecular Catalysis B: Enzymatic, 29, 133–148.

  9. 9.

    Kharrat, N., Ali, Y. B., Marzouk, S., Gargouri, Y., & Châabouni, M. K. (2011). Process Biochemistry, 46, 1083–1089.

  10. 10.

    Macario, A., Moliner, M., Corma, A., & Giordano, G. (2009). Microporous and Mesoporous Materials, 118, 334–340.

  11. 11.

    INPI Patent submission No. PI0306829-3, September 11, 2003.

  12. 12.

    Soares, C. M. F., de Castro, H. F., de Moraes, F. F., & Zanin, G. M. (1999). Applied Biochemistry and Biotechnology, 77, 745–757.

  13. 13.

    Buisson, P., & Pierre, A. C. (2006). Journal of Molecular Catalysis B: Enzymatic, 39, 77–82.

  14. 14.

    Pierre, A., & Buisson, P. (2001). Journal of Molecular Catalysis B: Enzymatic, 11, 639–647.

  15. 15.

    Cumana, S., Simons, J., Lieseb, A., Hilterhaus, L., & Smirnova, I. (2013). Journal of Molecular Catalysis B: Enzymatic, 85–86, 220–228.

  16. 16.

    Vollet, D. R., Nunes, L. M., Donatti, D. A., Ibanez Ruiz, A., & Maceti, H. (2008). Journal of Non-Crystalline Solids, 354, 1467–1474.

  17. 17.

    Reichenauer, G., & Scherer, G. W. (2001). Journal of Colloid and Interface Science, 236, 385–386.

  18. 18.

    Cabanas, A., Enciso, E., Carbajo, M. C., Torralvo, M. J., Pando, C., & Renuncio, J. A. R. (2007). Microporous and Mesoporous Materials, 99, 23–29.

  19. 19.

    Sing, K. S. W., Everett, D. H., Haul, R. A. W., Pierotti, R. A., Rouquerol, J., & Siemieniewska, T. (1985). Pure and Applied Chemistry, 57(4), 603–619.

  20. 20.

    Souza, R. L., Faria, E. L. P., Figueiredo, R. T., Freitas, L. S., Iglesias, M., Mattedi, S., Zanin, G. M., Santos, O. A. A., Coutinho, J. A. P., Lima, A. S., & Soares, C. M. F. (2013). Enzyme and Microbial Technology, 52, 141–150.

  21. 21.

    Vasquez, M. A., Rodrıguez, G. A., Garcıa-Salgado, G., Romero-Paredes, G., & Pena-Sierra, R. (2007). Revista Mexicana de Fisica, 53(6), 431–435.

  22. 22.

    Soares, C.M.F. Ph.D thesis, Universidade Estadual de Maringá, Brazil, 2003.

Download references

Author information

Correspondence to Carlos Eduardo Barão.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barão, C.E., de Paris, L.D., Dantas, J.H. et al. Characterization of Biocatalysts Prepared with Thermomyces lanuginosus Lipase and Different Silica Precursors, Dried using Aerogel and Xerogel Techniques. Appl Biochem Biotechnol 172, 263–274 (2014). https://doi.org/10.1007/s12010-013-0533-3

Download citation


  • Lipase
  • Immobilization
  • Sol–gel
  • Xerogel
  • Aerogel
  • Characterization