Applied Biochemistry and Biotechnology

, Volume 172, Issue 1, pp 380–393 | Cite as

Response Surface Methodology Based Optimization of β-Glucosidase Production from Pichia pastoris

  • Jyoti Batra
  • Dhananjay Beri
  • Saroj MishraEmail author


The thermotolerant yeast Pichia etchellsii produces multiple cell bound β-glucosidases that can be used for synthesis of important alkyl- and aryl-glucosides. Present work focuses on enhancement of β-glucosidase I (BGLI) production in Pichia pastoris. In the first step, one-factor-at-a-time experimentation was used to investigate the effect of aeration, antifoam addition, casamino acid addition, medium pH, methanol concentration, and mixed feed components on BGLI production. Among these, initial medium pH, methanol concentration, and mixed feed in the induction phase were found to affect BGLI production. A 3.3-fold improvement in β-glucosidase expression was obtained at pH 7.5 as compared to pH 6.0 on induction with 1 % methanol. Addition of sorbitol, a non-repressing substrate, led to further enhancement in β-glucosidase production by 1.4-fold at pH 7.5. These factors were optimized with response surface methodology using Box–Behnken design. Empirical model obtained was used to define the optimum “operating space” for fermentation which was a pH of 7.5, methanol concentration of 1.29 %, and sorbitol concentration of 1.28 %. Interaction of pH and sorbitol had maximum effect leading to the production of 4,400 IU/L. The conditions were validated in a 3-L bioreactor with accumulation of 88 g/L biomass and 2,560 IU/L β-glucosidase activity.


β-glucosidase I Pichia pastoris Response surface methodology Box–Behnken Design Pichia etchellsii 





p-Nitrophenyl glucopyranoside




Response surface methodology



Financial assistance from the Department of Science and Technology, Government of India, New Delhi is gratefully acknowledged. Senior research fellowship to Miss Jyoti Batra from the Council of Scientific and Industrial Research, New Delhi and scholarship to Mr. Dhananjay Beri provided by the Ministry of Human Resource and Development are gratefully acknowledged. We also thank Mr. Ashwani Gautam and Mr. Anshul Sharma for assisting in running the fermentor.

Supplementary material

12010_2013_519_MOESM1_ESM.docx (66 kb)
ESM 1 (DOCX 66 kb)


  1. 1.
    Baranwal, R., Jain, S., Shah, M. A., & Mishra, S. (2009). Elucidation of catalytically important residues in a large family 3 β-glucosidase from Pichia etchellsii. New Biotechnology, 25, Supplement, S126.Google Scholar
  2. 2.
    Barbosa, A. M., Giese, E. C., Dekker, R. F. H., Borsato, D., Briones Pérez, A. I., & Úbeda Iranzo, J. F. (2010). Extracellular β-glucosidase production by the yeast Debaromyces pseudopolymorphus UCLM-NS7A: optimization using response surface methodology. New Biotechnology, 27, 374–381.CrossRefGoogle Scholar
  3. 3.
    Bhataya, A., Schmidt-Dannert, C., & Lee, P. C. (2009). Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochemistry, 44, 1095–1102.CrossRefGoogle Scholar
  4. 4.
    Bhatia, Y., Mishra, S., & Bisaria, V. S. (2002). Microbial β-glucosidases: cloning, properties, and applications. Critical Reviews in Biotechnology, 22, 375–407.CrossRefGoogle Scholar
  5. 5.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  6. 6.
    Brierley, R. A., Davis, G. R., & Holtz, G. C. (1994). Production of insulin-like growth factor-1 in methylotrophic yeast cells. Google Patents.Google Scholar
  7. 7.
    Büchs, J. (2001). Introduction to advantages and problems of shaken cultures. Biochemical Engineering Journal, 7, 91–98.CrossRefGoogle Scholar
  8. 8.
    Cereghino, J. L., & Cregg, J. M. (2000). Heterologous protein expression in the methylotrophic yeast Pichia pastoris. FEMS Microbiology Reviews, 24, 45–66.CrossRefGoogle Scholar
  9. 9.
    Cos, O., Ramón, R., Montesinos, J., & Valero, F. (2006). Operational strategies, monitoring, and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review. Microbial Cell Factories, 5, 17.CrossRefGoogle Scholar
  10. 10.
    Crout, D. H. G., & Vic, G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Current Opinion in Chemical Biology, 2, 98–111.CrossRefGoogle Scholar
  11. 11.
    Daly, R., & Hearn, M. T. (2005). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. Journal of Molecular Recognition, 18, 119–138.CrossRefGoogle Scholar
  12. 12.
    Holmes, W., Darby, R., Wilks, M., Smith, R., & Bill, R. (2009). Developing a scalable model of recombinant protein yield from Pichia pastoris: the influence of culture conditions, biomass, and induction regime. Microbial Cell Factories, 8, 35.CrossRefGoogle Scholar
  13. 13.
    Hu, S., Li, L., Qiao, J., Guo, Y., Cheng, L., & Liu, J. (2006). Codon optimization, expression, and characterization of an internalizing anti-ErbB2 single-chain antibody in Pichia pastoris. Protein Expression and Purification, 47, 249–257.CrossRefGoogle Scholar
  14. 14.
    Inan, M., Chiruvolu, V., Eskridge, K. M., Vlasuk, G. P., Dickerson, K., Brown, S., & Meagher, M. M. (1999). Optimization of temperature–glycerol–pH conditions for a fed-batch fermentation process for recombinant hookworm Ancylostoma caninum anticoagulant peptide (AcAP-5) production by Pichia pastoris. Enzyme and Microbial Technology, 24, 438–445.CrossRefGoogle Scholar
  15. 15.
    Iwashita, K., Todoroki, K., Kimura, H., Shimoi, H., & Ito, K. (1998). Purification and characterization of extracellular and cell wall bound beta-glucosidases from Aspergillus kawachii. Bioscience, Biotechnology, and Biochemistry, 62, 1938–1946.Google Scholar
  16. 16.
    Jafari, R., Sundström, B. E., & Holm, P. (2011). Optimization of production of the anti-keratin 8 single-chain Fv TS1-218 in Pichia pastoris using design of experiments. Microbial Cell Factories, 10, 1–8.CrossRefGoogle Scholar
  17. 17.
    Jahic, M., Gustavsson, M., Jansen, A.-K., Martinelle, M., & Enfors, S.-O. (2003). Analysis and control of proteolysis of a fusion protein in Pichia pastoris fed-batch processes. Journal of Biotechnology, 102, 45–53.CrossRefGoogle Scholar
  18. 18.
    Jahic, M., Veide, A., Charoenrat, T., Teeri, T., & Enfors, S. O. (2006). Process technology for production and recovery of heterologous proteins with Pichia pastoris. Biotechnology Progress, 22, 1465–1473.CrossRefGoogle Scholar
  19. 19.
    Jin, H., Liu, G., Ye, X., Duan, Z., Li, Z., & Shi, Z. (2010). Enhanced porcine interferon-α production by recombinant Pichia pastoris with a combinational control strategy of low induction temperature and high dissolved oxygen concentration. Biochemical Engineering Journal, 52, 91–98.CrossRefGoogle Scholar
  20. 20.
    Job, J., Sukumaran, R. K., & Jayachandran, K. (2010). Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett–Burman and Box–Behnken experimental designs. World Journal of Microbiology and Biotechnology, 26, 1385–1391.CrossRefGoogle Scholar
  21. 21.
    Jungo, C., Schenk, J., Pasquier, M., Marison, I. W., & von Stockar, U. (2007). A quantitative analysis of the benefits of mixed feeds of sorbitol and methanol for the production of recombinant avidin with Pichia pastoris. Journal of Biotechnology, 131, 57–66.CrossRefGoogle Scholar
  22. 22.
    Klöckner, W., & Büchs, J. (2012). Advances in shaking technologies. Trends Biotechnol, 30, 307–314.CrossRefGoogle Scholar
  23. 23.
    Kobayashi, K., Kuwae, S., Ohya, T., Ohda, T., Ohyama, M., Ohi, H., Tomomitsu, K., & Ohmura, T. (2000). High-level expression of recombinant human serum albumin from the methylotrophic yeast Pichia pastoris with minimal protease production and activation. Journal of Bioscience and Bioengineering, 89, 55–61.CrossRefGoogle Scholar
  24. 24.
    Lee, C. Y., Lee, S. J., Jung, K. H., Katoh, S., & Lee, E. K. (2003). High dissolved oxygen tension enhances heterologous protein expression by recombinant Pichia pastoris. Process Biochemistry, 38, 1147–1154.CrossRefGoogle Scholar
  25. 25.
    Li, P., Anumanthan, A., Gao, X.-G., Ilangovan, K., Suzara, V. V., Düzgüneş, N., & Renugopalakrishnan, V. (2007). Expression of recombinant proteins in Pichia pastoris. Applied Biochemistry and Biotechnology, 142, 105–124.CrossRefGoogle Scholar
  26. 26.
    Pandey, M., & Mishra, S. (1995). Cloning and expression of β-glucosidase gene from the yeast Pichia etchellsii. Journal of Fermentation and Bioengineering, 80, 446–453.CrossRefGoogle Scholar
  27. 27.
    Pichia expression kit. Available from:
  28. 28.
    Plackett, R. L., & Burman, J. P. (1946). The design of optimum multifactorial experiments. Biometrika, 33, 305–325.CrossRefGoogle Scholar
  29. 29.
    Rather, M. Y., Mishra, S., & Aravinda, S. (2013). Exploring the synthetic potential of cell bound β-glycosidase of Pichia etchellsii. Journal of Biotechnology, 165, 63–68.CrossRefGoogle Scholar
  30. 30.
    Rather, M. Y., Mishra, S., Verma, V., & Chand, S. (2012). Biotransformation of methyl-β-d-glucopyranoside to higher chain alkyl glucosides by cell bound β-glucosidase of Pichia etchellsii. Bioresource Technology, 107, 287–294.CrossRefGoogle Scholar
  31. 31.
    Rols, J., & Goma, G. (1991). Enhanced oxygen transfer rates in fermentation using soybean oil-in-water dispersions. Biotechnology Letters, 13, 7–12.CrossRefGoogle Scholar
  32. 32.
    Routledge, S. J., Hewitt, C. J., Bora, N., & Bill, R. M. (2011). Antifoam addition to shake flask cultures of recombinant Pichia pastoris increases yield. Microbial Cell Factories, 10, 17.CrossRefGoogle Scholar
  33. 33.
    Sánchez, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnology Advances, 27, 185–194.CrossRefGoogle Scholar
  34. 34.
    Sreekrishna, K., Brankamp, R. G., Kropp, K. E., Blankenship, D. T., Tsay, J.-T., Smith, P. L., Wierschke, J. D., Subramaniam, A., & Birkenberger, L. A. (1997). Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene, 190, 55–62.CrossRefGoogle Scholar
  35. 35.
    Stratton, J., Chiruvolu, V., & Meagher, M. (1998). in Pichia protocols, Springer, pp. 107–120.Google Scholar
  36. 36.
    Strobel, R., & Sullivan, G. (1999). Experimental design for improvement of fermentations. Manual of Industrial Microbiology Biotechnology, 2, 80–93.Google Scholar
  37. 37.
    Su, J.-H., Xu, J.-H., Lu, W.-Y., & Lin, G.-Q. (2006). Enzymatic transformation of ginsenoside Rg3 to Rh2 using newly isolated Fusarium proliferatum ECU2042. Journal of Molecular Catalysis B: Enzymatic, 38, 113–118.CrossRefGoogle Scholar
  38. 38.
    Swalley, S. E., Fulghum, J. R., & Chambers, S. P. (2006). Screening factors affecting a response in soluble protein expression: formalized approach using design of experiments. Analytical Biochemistry, 351, 122–127.CrossRefGoogle Scholar
  39. 39.
    Villatte, F., Hussein, A., Bachmann, T., & Schmid, R. (2001). Expression level of heterologous proteins in Pichia pastoris is influenced by flask design. Applied Microbiology and Biotechnology, 55, 463–465.CrossRefGoogle Scholar
  40. 40.
    von Rybinski, W., & Hill, K. (1998). Alkyl polyglycosides—properties and applications of a new class of surfactants. Angewandte Chemie International Edition, 37, 1328–1345.CrossRefGoogle Scholar
  41. 41.
    Wallecha, A., & Mishra, S. (2003). Purification and characterization of two β-glucosidases from a thermo-tolerant yeast Pichia etchellsii. Biochimica et Biophysica Acta (BBA)—Proteins & Proteomics, 1649, 74–84.CrossRefGoogle Scholar
  42. 42.
    Wegner, E. H. (1983). Biochemical conversions by yeast fermentation at high cell densities. Google Patents.Google Scholar
  43. 43.
    Weuster-Botz, D. (2000). Experimental design for fermentation media development: Statistical design or global random search? Journal of Bioscience and Bioengineering, 90, 473–483.CrossRefGoogle Scholar
  44. 44.
    Wu, D., Chu, J., Hao, Y.-Y., Wang, Y.-H., Zhuang, Y.-P., & Zhang, S.-L. (2012). Incomplete protein disulphide bond conformation and decreased protein expression result from high cell growth during heterologous protein expression in Pichia pastoris. Journal of Biotechnology, 157, 107–112.CrossRefGoogle Scholar
  45. 45.
    Xie, J., Zhou, Q., Du, P., Gan, R., & Ye, Q. (2005). Use of different carbon sources in cultivation of recombinant Pichia pastoris for angiostatin production. Enzyme and Microbial Technology, 36, 210–216.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biochemical Engineering and BiotechnologyIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations