Advertisement

Applied Biochemistry and Biotechnology

, Volume 171, Issue 8, pp 1933–1943 | Cite as

Growth of Chlorella vulgaris on Sugarcane Vinasse: The Effect of Anaerobic Digestion Pretreatment

  • Sheyla Santa Isabel Marques
  • Iracema Andrade Nascimento
  • Paulo Fernando de Almeida
  • Fábio Alexandre ChinaliaEmail author
Article

Abstract

Microalgae farming has been identified as the most eco-sustainable solution for producing biodiesel. However, the operation of full-scale plants is still limited by costs and the utilization of industrial and/or domestic wastes can significantly improve economic profits. Several waste effluents are valuable sources of nutrients for the cultivation of microalgae. Ethanol production from sugarcane, for instance, generates significant amounts of organically rich effluent, the vinasse. After anaerobic digestion treatment, nutrient remaining in such an effluent can be used to grow microalgae. This research aimed to testing the potential of the anaerobic treated vinasse as an alternative source of nutrients for culturing microalgae with the goal of supplying the biodiesel industrial chain with algal biomass and oil. The anaerobic process treating vinasse reached a steady state at about 17 batch cycles of 24 h producing about 0.116 m3CH4 kgCODvinasse −1. The highest productivity of Chlorella vulgaris biomass (70 mg l−1 day−1) was observed when using medium prepared with the anaerobic digester effluent. Lipid productivity varied from 0.5 to 17 mg l−1 day−1. Thus, the results show that it is possible to integrate the culturing of microalgae with the sugarcane industry by means of anaerobic digestion of the vinasse. There is also the advantageous possibility of using by-products of the anaerobic digestion such as methane and CO2 for sustaining the system with energy and carbon source, respectively.

Keywords

Vinasse Anaerobic digestion Microalgae and biofuels 

Notes

Acknowledgments

The authors would like to acknowledge the financial support from the Brazilian Research Councils: grant 551134/2010-0 from CNPq and grant PET004/2103 from CAPES/FAPESB and also the donation of vinasse by Agrovale S/A, Brazil.

References

  1. 1.
    IEA. (2007). Report. Paris: World Energy Outlook.Google Scholar
  2. 2.
    OECD/FAO. (2009). Available from: http://www.oecd.org/site/oecd-faoagriculturaloutlook/43040036.pdf Accessed 10 May 2013.
  3. 3.
    IPCC Fourth Assessment Report: Climate Change 2007 (AR4). Available from: http://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml#.Ubh5VzdWySo Accessed 10 May 2013.
  4. 4.
    Gouveia, I., & Oliveira, A. C. (2009). Journal of industrial microbiology and biotechnology, 36, 269–274.CrossRefGoogle Scholar
  5. 5.
    Demirbas, A., & Demirbas, M. F. (2011). Energy conversion and management, 52, 163–170.CrossRefGoogle Scholar
  6. 6.
    Sheehan, J., Dunahay, T., Benemann, J. and Roessler, P. (1998). Available from: http://www.nrel.gov/biomass/pdfs/24190.pdf Accessed 10 May 2013.
  7. 7.
    Altieri, M. A. (2009). Bull science technology and society, 29, 236–244.CrossRefGoogle Scholar
  8. 8.
    Wijffels, R. H., & Barbosa, M. J. (2010). Science, 329, 796–799.CrossRefGoogle Scholar
  9. 9.
    Benemann, J. R. (2009). Benemann Associates and MicroBio Engineering, Inc. USAGoogle Scholar
  10. 10.
    Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  11. 11.
    Chisti, Y. (2008). Trends in Biotechnology Biofuels, 26, 126–131.CrossRefGoogle Scholar
  12. 12.
    Bonini, M. A. (2012). MSc Dissertation, Federal University of Sao Carlos, Sao Carlos, BrazilGoogle Scholar
  13. 13.
    Rodolfi, L., Zittelli, G. C., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Biotechnology and Bioengineering, 102, 100–112.CrossRefGoogle Scholar
  14. 14.
    Olguín, E. J. (2012). Biotechnology Advances, 30, 1031–1046.CrossRefGoogle Scholar
  15. 15.
    Wang, L., Min, M., Li, Y., Wang, Y., & Ruan, R. (2010). Applied Biochemistry and Biotechnology, 162, 1174–1186.CrossRefGoogle Scholar
  16. 16.
    España-Gamboa, E., Mijangos-Cortes, J., Barahona-Perez, L., Dominguez-Maldonado, J., Hernández-Zarate, G., & Alzate-Gaviria, L. (2011). Waste Management and Research, 29, 1235–1250.CrossRefGoogle Scholar
  17. 17.
    Rodrigues, J. B. R., & Belli-Flho, P. (2004). Biotemas, 17, 7–26.Google Scholar
  18. 18.
    Weber, M. I. (2006). MSc Dissertation, Federal University of Parana, Curitiba, Brazil.Google Scholar
  19. 19.
    Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Journal of Hazardous Materials, 163, 12–25.CrossRefGoogle Scholar
  20. 20.
    Pant, D., & Adholeya, A. (2007). Bioresource Technology, 98, 2321–2334.CrossRefGoogle Scholar
  21. 21.
    Satyawali, Y., & Balakrishnan, M. (2008). Journal of Helminthology, 86, 481–497.Google Scholar
  22. 22.
    CONAB. (2011). Available from: www.conab.com.br. Accessed May 11, 2013.
  23. 23.
    Cabello, P. E. Scognamiglio, F. P. and Terán, F. J. C. (2009) Tratamento de vinhaça em reator anaeróbio de leito fluidizado, Engenharia Ambiental-Presidente Prudente, Espírito Santo do Pinhal, Brazil.Google Scholar
  24. 24.
    Cruz, J. I. da., Hojda, A. and Portugal, R. S. (2007). in: 24º Congresso Brasileiro de Engenharia Sanitária e Ambiental. Belo Horizonte. pp. 14–17.Google Scholar
  25. 25.
    Standard Methods for the Examination of Water and Wastewater. (1995). American Public Health Association, Washington, D.C.Google Scholar
  26. 26.
    Nascimento, I. A., Marques, S. S. I., Cabanelas, I. T. D., Pereira, S. A., Souza, C. O., Druzian, J. I., et al. (2013). Bioenergetics Research, 6, 1–13.CrossRefGoogle Scholar
  27. 27.
    Griffiths, M. J., & Harisson, S. T. L. (2009). Journal of Applied Phycology, 21, 493–507.CrossRefGoogle Scholar
  28. 28.
    Souza, M. E., Fuzaro, G., & Polegato, A. R. (1992). Water Science and Technology, 25, 212–223.Google Scholar
  29. 29.
    Turkdogan-Aydinol, F., & Yetilmezsoy, K. (2010). Journal of Hazardous Materials, 182, 460–471.CrossRefGoogle Scholar
  30. 30.
    Goodwin, J. A. S., Finlayson, J. M., & Low, E. W. (2001). Bioresource Technology, 78, 155–160.CrossRefGoogle Scholar
  31. 31.
    Manresa, F. N., Morenda F. F-P F., Martínez S. J. M. and Lavin D. T. (2000). Proceedings, VI Oficina e Seminário Latino-Americano de Digestão Anaeróbia, Recife, Brazil.Google Scholar
  32. 32.
    Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Bioresource Technology, 99, 4044–4064.CrossRefGoogle Scholar
  33. 33.
    Jiménez, A. M., Borja, R., & Martin, A. (2003). Process Biochemistry, 38, 1275–1284.CrossRefGoogle Scholar
  34. 34.
    Sile, J. A., Garcia-Garcia, I., Martin, A., & Martin, M. A. (2011). Journal of Hazardous Materials, 188, 247–253.CrossRefGoogle Scholar
  35. 35.
    Rabelo, S. C., Carrere, H., & Maciel-Filho, R. (2011). Bioresource Technology, 102, 7887–7895.CrossRefGoogle Scholar
  36. 36.
    Ryan, D., Gadd, A., Kavanagh, J., Zhou, M., & Barton, G. (2008). Separation and Purification Technology, 58, 347.CrossRefGoogle Scholar
  37. 37.
    Valderrama, L. T., Del Campo, C. M., Rodriguez, C. M., Bashan, L. E., & Bashan, Y. (2002). Water Research, 36, 4185–4192.CrossRefGoogle Scholar
  38. 38.
    Heredia-Arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Biomass and Bioenergy, 35, 2245–2253.CrossRefGoogle Scholar
  39. 39.
    Migo, V. P., Matsumara, M., Rosario, E. J. D., & Kataoka, H. (1993). Journal of Fermentation and Bioengineering, 75, 438–442.CrossRefGoogle Scholar
  40. 40.
    Kalavathi, D. F., Uma, L., & Subramanian, G. (2001). Enzyme Microbiological Technology, 29, 246–251.CrossRefGoogle Scholar
  41. 41.
    Kadioglu, A., & Algur, O. F. (1992). Bioresource Technology, 42, 1–5.CrossRefGoogle Scholar
  42. 42.
    Cabanelas, I. T. D., Ruiz, J., Arbib, Z., Chinalia, F. A., Garrido-Pérez, C., Rogalla, F., et al. (2013). Bioresource Technology, 131, 429–436.CrossRefGoogle Scholar
  43. 43.
    Xin, L., Hong-ying, H., Ke, G., & Ying-xue, S. (2010). Bioresource Technology, 101, 5494–5500.CrossRefGoogle Scholar
  44. 44.
    Parker, D. L., Kumar, H. D., Rai, L. C., & Singh, J. B. (1997). Applied and Environmental Microbiology, 63, 2324–2329.Google Scholar
  45. 45.
    Shukla, B., & Rai, L. C. (2006). Harmful Algae, 5, 184–191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sheyla Santa Isabel Marques
    • 1
  • Iracema Andrade Nascimento
    • 1
  • Paulo Fernando de Almeida
    • 2
  • Fábio Alexandre Chinalia
    • 2
    Email author
  1. 1.Laboratório de Biologia Marinha Instituto de Biologia (IB)Universidade Federal da Bahia/BrasilSalvadorBrazil
  2. 2.Laboratório de Biotecnologia e Ecologia de Microorganismos, Instituto de Ciências da Saúde (ICS)Universidade Federal da Bahia/BrasilSalvadorBrazil

Personalised recommendations