Advertisement

Applied Biochemistry and Biotechnology

, Volume 171, Issue 8, pp 1956–1967 | Cite as

Improvement of Regio-Specific Production of Myricetin-3-O-α-l-Rhamnoside in Engineered Escherichia coli

  • Nguyen Huy Thuan
  • Ramesh Prasad Pandey
  • Ta Thi Thu Thuy
  • Je Won Park
  • Jae Kyung SohngEmail author
Article

Abstract

Myricetin is an important flavonol whose medically important properties include activities as an antioxidant, anticarcinogen, and antimutagen. The solubility, stability, and other biological properties of the compounds can be enhanced by conjugating aglycon with sugar moieties. The type of sugar moiety also plays a significant role in the biological and physical properties of the natural product glycosides. Reconstructed Escherichia coli containing thymidine diphosphate-α-l-rhamnose sugar gene cassette and Arabidopsis-derived glycosyltransferase were used for rhamnosylation of myricetin. Myricetin (100 μM) was exogenously supplemented to induced cultures of engineered E. coli. The formation of target product—myricetin-3-O-α-l-rhamnoside—was confirmed by chromatographic and NMR analyses. The yield of product was improved by using various mutants and methylated cyclodextrin as a molecular carrier for myricetin in combination with E. coli M3G3. The maximal yield of product is 55.6 μM (3.31-fold higher than the control E. coli MG3) and shows 55.6 % bioconversion of substrate under optimized conditions.

Keywords

Myricetin Myricetin-3-O-α-l-rhamnoside Whole-cell biocatalysis 

Notes

Acknowledgments

This work was supported by grant from the Next-Generation BioGreen 21 Program (SSAC, grant#: PJ00948302), Rural Development Administration and supported by the Intelligent Synthetic Biology Center of Global Frontier Project funded by the Ministry of Education, Science and Technology (2011-0031960), Republic of Korea; grants from the National Foundation for Science and Technology Development—(NAFOSTED), Vietnam (Grant no: 104.01-2010.22).

Supplementary material

12010_2013_459_MOESM1_ESM.docx (6.8 mb)
ESM 1 (DOCX 6942 kb)

References

  1. 1.
    Nirmala, P., & Ramanathan, M. (2011). Journal of Experimental Therapeutics and Oncology, 9, 101–108.Google Scholar
  2. 2.
    Robak, J., & Gryglewski, R. J. (1988). Biochemical Pharmacology, 37, 837–841.CrossRefGoogle Scholar
  3. 3.
    Abalea, V., Cillard, J., Dubos, M. P., Sergent, O., Cillard, P., & Morel, I. (1999). Free Radical Biology and Medicine, 26, 1457–1466.CrossRefGoogle Scholar
  4. 4.
    Meotti, F. C., Senthilmohan, R., Harwood, D. T., Missau, F. C., Pizzolatti, M. G., & Kettle, A. J. (2008). Free Radical Biology and Medicine, 44, 109–120.CrossRefGoogle Scholar
  5. 5.
    Pereira, M., Siba, I. P., Chioca, L. R., Correia, D., Vital, M. A., Pizzolatti, M. G., et al. (2011). Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 1636–1644.CrossRefGoogle Scholar
  6. 6.
    Shimosaki, S., Tsurunaga, Y., Itamura, H., & Nakamura, M. (2011). Natural Product Research, 25, 374–380.CrossRefGoogle Scholar
  7. 7.
    Sun, G. B., Qin, M., Ye, J. X., Pan, R. L., Meng, X. B., Wang, M., Luo, Y., Li, Z. Y., Wang, H. W., & Sun, X. B. (2013). Toxicology and Applied Pharmacology. doi: 10.1016/j.taap.2013.04.015.Google Scholar
  8. 8.
    Ren, G., Hou, J., Fang, Q., Sun, H., Liu, X., Zhang, L., et al. (2012). Glycoconjugate Journal, 29, 425–432.CrossRefGoogle Scholar
  9. 9.
    Weis, M., Lim, E. K., Bruce, N., & Bowles, D. (2006). Angewandte Chemie International Edition, 45, 3534–3538.CrossRefGoogle Scholar
  10. 10.
    Thibodeaux, C. J., & Melacon, C. E. (2008). Angewandte Chemie International Edition, 47, 9814–9859.CrossRefGoogle Scholar
  11. 11.
    Jones, P., Messner, B., Nakajima, J., Schaffner, A. R., & Saito, K. (2003). Journal of Biological Chemistry, 278, 43910–43918.CrossRefGoogle Scholar
  12. 12.
    Lim, E. K., Ashford, D. A., & Bowles, D. J. (2006). ChemBioChem, 7, 1181–1185.CrossRefGoogle Scholar
  13. 13.
    Lim, E. K., Ashford, D. A., Hou, B., Jackson, R. G., & Bowles, D. J. (2004). Biotechnology and Bioengineering, 87, 623–631.CrossRefGoogle Scholar
  14. 14.
    Trantas, E., Panopoulos, N., & Ververidis, F. (2009). Metabolic Engineering, 11, 355–366.CrossRefGoogle Scholar
  15. 15.
    Yoon, J. A., Kim, B. G., Lee, W. J., Lim, Y., Chong, Y., & Ahn, J. H. (2012). Applied and Environmental Microbiology, 78, 4256–4262.CrossRefGoogle Scholar
  16. 16.
    Williams, G. J., Yang, J., Zhang, C., & Thorson, J. S. (2011). ACS Chemical Biology, 6, 95–100.CrossRefGoogle Scholar
  17. 17.
    Kren, V., & Martínková, L. (2001). Current Medicinal Chemistry, 8, 1303–1328.CrossRefGoogle Scholar
  18. 18.
    Pandey, R. P., Malla, S., Simkhada, D., Kim, B. G., & Sohng, J. K. (2012). Applied Microbiology and Biotechnology, 97, 1889–1901.CrossRefGoogle Scholar
  19. 19.
    Simkhada, D., Kim, E. M., Lee, H. C., & Sohng, J. K. (2009). Molecules and Cells, 28, 397–401.CrossRefGoogle Scholar
  20. 20.
    Simkhada, D., Lee, H. C., & Sohng, J. K. (2010). Biotechnology and Bioengineering, 107, 154–162.CrossRefGoogle Scholar
  21. 21.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  22. 22.
  23. 23.
    Liu, S. Y., & Rosazza, J. P. (1998). Applied and Environmental Microbiology, 64, 3972–3976.Google Scholar
  24. 24.
    Liu, S. Y., & Rosazza, P. N. (1995). Journal of Liquid Chromatography, 18, 4081–4095.CrossRefGoogle Scholar
  25. 25.
    Shen, Y., Wang, M., Zhang, L., Ma, Y., Ma, B., Zheng, Y., et al. (2011). Applied Microbiology and Biotechnology, 90, 1995–2003.CrossRefGoogle Scholar
  26. 26.
    Bergonzi, M. C., Bilia, A. R., Di Bari, L., Mazzi, G., & Vincieri, F. F. (2007). Bioorganic and Medicinal Chemistry Letters, 17, 5744–5748.CrossRefGoogle Scholar
  27. 27.
    Donova, M. V., Nikolayeva, V. M., Dovbnya, D. V., Gulevskaya, S. A., & Suzina, N. E. (2007). Microbiology, 153, 1981–1992.CrossRefGoogle Scholar
  28. 28.
    Ma, S. X., Chen, W., Yang, X. D., Zhang, N., Wang, S. J., Liu, L., et al. (2012). Journal of Pharmaceutical and Biomedical Analysis, 67–68, 193–200.CrossRefGoogle Scholar
  29. 29.
    Truong, V. T., Boyer, R. R., McKinney, J. M., O’Keefe, S. F., & William, R. C. (2010). Journal of Food Protection, 73, 92–96.Google Scholar
  30. 30.
    Wen, J., Liu, B., Yuan, E., Ma, Y., & Zhu, Y. (2010). Molecules, 15, 4401–4407.CrossRefGoogle Scholar
  31. 31.
    Xiao, Y., Yang, L., Mao, P., Yuan, J., Deng, Y., & Qu, L. (2012). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85, 298–302.CrossRefGoogle Scholar
  32. 32.
    Ficarra, R., Tommassini, S., Raneri, D., Calabro, M. L., Di Bella, M. R., Rustichelli, C., et al. (2002). Journal of Pharmaceutical and Biomedical Analysis, 29, 1005–1014.CrossRefGoogle Scholar
  33. 33.
    Kim, B. G., Kim, H. J., & Ahn, J. H. (2012). Journal of Agriculture and Food Chemistry, 60, 11143–11148.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nguyen Huy Thuan
    • 1
  • Ramesh Prasad Pandey
    • 1
  • Ta Thi Thu Thuy
    • 2
  • Je Won Park
    • 1
  • Jae Kyung Sohng
    • 1
    Email author
  1. 1.Department of Pharmaceutical Engineering, Institute of Biomolecule ReconstructionSun Moon UniversityAsan-siRepublic of Korea
  2. 2.Department of BiotechnologyHanoi Open UniversityHanoiVietnam

Personalised recommendations