Applied Biochemistry and Biotechnology

, Volume 171, Issue 7, pp 1775–1791 | Cite as

Nitrogen Limitation in Neochloris oleoabundans: A Reassessment of Its Effect on Cell Growth and Biochemical Composition

  • Adriana Garibay-Hernández
  • Rafael Vazquez-Duhalt
  • Leobardo Serrano-Carreón
  • Alfredo Martinez
Article

Abstract

The aim of this work was to reassess the effect of nitrogen limitation (from 0 to 1 mM nitrate), on the growth and the biochemical composition of Neochloris oleoabundans cultures, where only the CO2 available in the air was provided. Slight differences in the initial nitrate concentration, even minimal increments of 0.2 mM, significantly modify the microalgal response towards nitrogen limitation. This stress condition reduced cell proliferation, but increased cell mass values due to the simultaneous accumulation of two storage compounds: lipids, which contained up to a 55.9 % of total fatty acids; and carbohydrates, which may be primarily composed by starch. The highest biomass and lipid productivities of 98.24 and 43.24 mg/l/day, respectively, were attained at an initial nitrate concentration of 0.6 mM. The theoretical annual projection, based on these productivities, allowed the estimation of the liquid fuel energy yields, which are comparable or even higher than those calculated for several biomass feedstocks such as corn, oil palm, sugarcane, or even fast growing grasses, confirming the potential of nitrogen-limited N. oleoabundans biomass as an appropriate feedstock for biofuel purposes.

Keywords

Neochloris oleoabundans Microalgae Lipids Fatty acids Nitrogen limitation Biomass Biofuels 

References

  1. 1.
    Chisti, Y. (2007). Biotechnology Advances, 25, 294–306.CrossRefGoogle Scholar
  2. 2.
    Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Renewable & Sustainable Energy Reviews, 14, 217–232.CrossRefGoogle Scholar
  3. 3.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Renewable energy, 34, 1–5.CrossRefGoogle Scholar
  4. 4.
    Schenk, P., Thomas-Hall, S., Stephens, E., Marx, U., Mussgnug, J., Posten, C., et al. (2008). Bioenergy Research, 1, 20–43.CrossRefGoogle Scholar
  5. 5.
    Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., et al. (2008). Plant Journal, 54, 621–639.CrossRefGoogle Scholar
  6. 6.
    Gerbens-Leenes, W., Hoekstra, A. Y., & van der Meer, T. H. (2009). PNAS, 106, 10219–10223.CrossRefGoogle Scholar
  7. 7.
    Yang, J., Xu, M., Zhang, X., Hu, Q., Sommerfeld, M., & Chen, Y. (2011). Bioresource Technology, 102, 159–165.CrossRefGoogle Scholar
  8. 8.
    Band, C. J., Arredondo-Vega, B. O., Vazquez-Duhalt, R., & Greppin, H. (1992). Plant, Cell & Environment, 15, 129–133.CrossRefGoogle Scholar
  9. 9.
    Sheehan, J., Dunahay, T., Benemman, J. and Roessler, P. (1998), A look back at the U.S. Department of Energy’s Aquatic Species Program — Biodiesel from algae, National Renewable Energy Laboratory, Golden, CO.Google Scholar
  10. 10.
    Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology (1st ed.). Oxford: Blackwell Science.Google Scholar
  11. 11.
    Tornabene, T. G., Holzer, G., Lien, S., & Burris, N. (1983). Enzyme and Microbial Technology, 5, 435–440.CrossRefGoogle Scholar
  12. 12.
    Gouveia, L., Marques, A., da Silva, T., & Reis, A. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 821–826.CrossRefGoogle Scholar
  13. 13.
    Yang, Y., Xu, J., Vail, D., & Weathers, P. (2011). Bioresource Technology, 102, 5076–5082.CrossRefGoogle Scholar
  14. 14.
    Santos, A. M., Janssen, M., Lamers, P. P., Evers, W. A. C., & Wijffels, R. H. (2012). Bioresource Technology, 104, 593–599.CrossRefGoogle Scholar
  15. 15.
    Arredondo-Vega, B. O., Band, C. J., & Vazquez-Duhalt, R. (1995). Cytobios, 83, 201–205.Google Scholar
  16. 16.
    Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). Bioresource Technology, 124, 217–226.CrossRefGoogle Scholar
  17. 17.
    Levine, R. B., Costanza-Robinson, M. S., & Spatafora, G. A. (2011). Biomass and Bioenergy, 35, 40–49.CrossRefGoogle Scholar
  18. 18.
    Li, Y., Horsman, M., Wang, B., Wu, N., & Lan, C. (2008). Applied Microbiology and Biotechnology, 81, 629–636.CrossRefGoogle Scholar
  19. 19.
    Popovich, C. A., Damiani, C., Constenla, D., Martínez, A. M., Freije, H., Giovanardi, M., et al. (2012). Bioresource Technology, 114, 287–293.CrossRefGoogle Scholar
  20. 20.
    Pruvost, J., Van Vooren, G., Cogne, G., & Legrand, J. (2009). Bioresource Technology, 100, 5988–5995.CrossRefGoogle Scholar
  21. 21.
    Knothe, G. (2008). Energy & Fuels, 22, 1358–1364.CrossRefGoogle Scholar
  22. 22.
    Giovanardi, M., Ferroni, L., Baldisserotto, C., Tedeschi, P., Maietti, A., Pantaleoni, L. and Pancaldi, S. (2013) Protoplasma, 161–174.Google Scholar
  23. 23.
    Wang, B., & Lan, C. Q. (2011). Bioresource Technology, 102, 5639–5644.CrossRefGoogle Scholar
  24. 24.
    Wu, N., Li, Y., & Lan, C. (2011). Journal of Polymers and the Environment, 19, 935–942.CrossRefGoogle Scholar
  25. 25.
    Vazquez-Duhalt, R., & Greppin, H. (1987). Phytochemistry, 26, 885–889.CrossRefGoogle Scholar
  26. 26.
    Kates, M. (1986). Techniques of lipidology: isolation, analysis and identification of lipids (2nd ed.). Amsterdam: Elsevier.Google Scholar
  27. 27.
    Thermo Scientific Pierce GC and HPLC technical handbook 2008. Available from: www.fisher.co.uk/techzone/pdfs/pierce/1601383_GChandbook2008.pdf. Accessed October, 2008.
  28. 28.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  29. 29.
    Chaplin, M. F. (1986). In M. F. Chaplin & J. F. Kennedy (Eds.), Monosaccharides (pp. 1–7). Oxford: IRL Press.Google Scholar
  30. 30.
    Brewer, P. G., & Goldman, J. C. (1976). Limnology and Oceanography, 21, 108–117.CrossRefGoogle Scholar
  31. 31.
    Goldman, J. C., Dennett, M. R., & Riley, C. B. (1982). Biotechnology and Bioengineering, 24, 619–631.CrossRefGoogle Scholar
  32. 32.
    Grossman, A., & Takahashi, H. (2001). Annual Review of Plant Physiology and Plant Molecular Biology, 52, 163–210.CrossRefGoogle Scholar
  33. 33.
    Piorreck, M., Baasch, K.-H., & Pohl, P. (1984). Phytochemistry, 23, 207–216.CrossRefGoogle Scholar
  34. 34.
    Courchesne, N. M. D., Parisien, A., Wang, B., & Lan, C. Q. (2009). Journal of Biotechnology, 141, 31–41.CrossRefGoogle Scholar
  35. 35.
    Thompson, G. A. (1996). Biochimica et Biophysica Acta, 1302, 17–45.CrossRefGoogle Scholar
  36. 36.
    Becker, E. W. (1994). Microalgae: biotechnology and microbiology (1st ed.). Cambridge: Cambridge University Press.Google Scholar
  37. 37.
    Sanchez Miron, A., Ceron Garcia, M.-C., Garcia Camacho, F., Molina Grima, E., & Chisti, Y. (2002). Enzyme and Microbial Technology, 31, 1015–1023.CrossRefGoogle Scholar
  38. 38.
    Pruvost, J., Van Vooren, G., Le Gouic, B., Couzinet-Mossion, A., & Legrand, J. (2011). Bioresource Technology, 102, 150–158.CrossRefGoogle Scholar
  39. 39.
    Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., et al. (2009). Biotechnology and Bioengineering, 102, 100–112.CrossRefGoogle Scholar
  40. 40.
    Li, Y., Han, D., Sommerfeld, M., & Hu, Q. (2011). Bioresource Technology, 102, 123–129.CrossRefGoogle Scholar
  41. 41.
    Utting, S. D. (1985). Aquacultural Engineering, 4, 175–190.CrossRefGoogle Scholar
  42. 42.
    Gatenby, C. M., Orcutt, D. M., Kreeger, D. A., Parker, B. C., Jones, V. A., & Neves, R. J. (2003). Journal of Applied Phycology, 15, 1–11.CrossRefGoogle Scholar
  43. 43.
    Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Journal of Scientific and Industrial Research, 67, 849–864.Google Scholar
  44. 44.
    Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.CrossRefGoogle Scholar
  45. 45.
    Knothe, G. (2005). Fuel Processing Technology, 86, 1059–1070.CrossRefGoogle Scholar
  46. 46.
    Murray, K. E., Shields, J. A., Garcia, N. D., & Healy, F. G. (2012). Bioresource Technology, 114, 499–506.CrossRefGoogle Scholar
  47. 47.
    Ma, J. and Hemmers, O. (2010), ASME Conference Proceedings, Phoenix, AZ.Google Scholar
  48. 48.
    Illman, A. M., Scragg, A. H., & Shales, S. W. (2000). Enzyme and Microbial Technology, 27, 631–635.CrossRefGoogle Scholar
  49. 49.
    Demirbas, A. (2007). Progress in Energy and Combustion Science, 33, 1–18.CrossRefGoogle Scholar
  50. 50.
    Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Renewable & Sustainable Energy Reviews, 14, 578–597.CrossRefGoogle Scholar
  51. 51.
    Demirbas, A. (2011). Applied Energy, 88, 17–28.CrossRefGoogle Scholar
  52. 52.
    Ohlrogge, J., & Chapman, K. (2011). The Biochemist, 33, 34–38.Google Scholar
  53. 53.
    US Department of Agriculture, Feed Grains Database. Available from: http://www.ers.usda.gov/data-products/feed-grains-database/feed-grains-custom-query.aspx. Accessed February 22, 2013.
  54. 54.
    Sheehan, J., Aden, A., Paustian, K., Killian, K., Brenner, J., Walsh, M., et al. (2003). Journal of Industrial Ecology, 7, 117–146.CrossRefGoogle Scholar
  55. 55.
    US Department of Energy, Theoretical Ethanol Yield Calculator 2006. Available from: http://www1.eere.energy.gov/biomass/ethanol_yield_calculator.html?m=1&. Accessed February 22, 2013.
  56. 56.
    Martinez-Jimenez, A., Rodriguez-Alegria, M. E., Lopez-Munguia, A., & Gosset-Lagarda, G. (2006). Claridades Agropecuarias, 155, 33–39.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Adriana Garibay-Hernández
    • 1
  • Rafael Vazquez-Duhalt
    • 1
  • Leobardo Serrano-Carreón
    • 1
  • Alfredo Martinez
    • 1
  1. 1.Departamento de Ingeniería Celular y Biocatálisis, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations