Advertisement

Applied Biochemistry and Biotechnology

, Volume 171, Issue 8, pp 2262–2272 | Cite as

Purification and Partial Characterization of Bacillomycin L Produced by Bacillus amyloliquefaciens K103 from Lemon

  • Bao Zhang
  • Chunjuan Dong
  • Qingmao ShangEmail author
  • Yuan Cong
  • Weijia Kong
  • Pinglan LiEmail author
Article

Abstract

Bacillus amyloliquefaciens K103 isolated from a lemon sample was used as a biocontrol agent to suppress Rhizoctonia solani Kühn and other fungal plant pathogens. Two antifungal compounds were purified from the culture broth using acid precipitation, gel permeation chromatography, and reversed-phase high-performance liquid chromatography. Matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis indicated that the antifungal compounds were two isomers similar to bacillomycin L. One of the predominant active fractions was subjected to quadrupole time-of-flight mass spectrometry and amino acid analysis to determine its structural characteristics, revealing that the antifungal compound with a molecular mass of 1,034.5464 was identical to bacillomycin L. This is the second report of lemon microflora producing bacillomycin L or any antifungal compound, suppressing the growth of R. solani Kühn. Meanwhile, the study provided insights into the enormous potential of food microbial resources and bacillomycin L antibiotics in biological control and sustainable agriculture.

Keywords

Bacillus amyloliquefaciens Bacillomycin L Mass spectrometry Antifungal compounds Biological control 

Notes

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 31172001) and supported by the Special Fund for Agro-scientific Research in the Public Interest of China (201303014).

References

  1. 1.
    Grosch, R., Faltin, F., Lottmann, J., Kofoet, A., & Berg, G. (2005). Canadian Journal of Microbiology, 51, 345–353.CrossRefGoogle Scholar
  2. 2.
    Ogoshi, A. (1987). Annual Review of Phytopathology, 25, 125–143.CrossRefGoogle Scholar
  3. 3.
    Jung, W. J., An, K. N., Jin, Y. L., Park, R. D., Lim, K. T., Kim, K. Y., et al. (2003). Soil Biology and Biochemistry, 35, 1261–1264.CrossRefGoogle Scholar
  4. 4.
    Asaka, O., & Shoda, M. (1996). Applied and Environmental Microbiology, 62, 4081–4085.Google Scholar
  5. 5.
    Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). FEMS Microbiology Reviews, 34, 1037–1062.Google Scholar
  6. 6.
    Ongena, M., & Jacques, P. (2008). Trends in Microbiology, 16, 115–125.CrossRefGoogle Scholar
  7. 7.
    Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., et al. (2007). Nature Biotechnology, 25, 1007–1014.CrossRefGoogle Scholar
  8. 8.
    Toure, Y., Ongena, M., Jacques, P., Guiro, A., & Thonart, P. (2004). Journal of Applied Microbiology, 96, 1151–1160.CrossRefGoogle Scholar
  9. 9.
    Yu, G. Y., Sinclair, J. B., Hartman, G. L., & Bertagnolli, B. L. (2002). Soil Biology and Biochemistry, 34, 955–963.CrossRefGoogle Scholar
  10. 10.
    Chen, L., Wang, N., Wang, X., Hu, J., & Wang, S. (2010). Bioresource Technology, 101, 8822–8827.CrossRefGoogle Scholar
  11. 11.
    Arrebola, E., Jacobs, R., & Korsten, L. (2010). Journal of Applied Microbiology, 108, 386–395.CrossRefGoogle Scholar
  12. 12.
    Snook, M. E., Mitchell, T., Hinton, D. M., & Bacon, C. W. (2009). Journal of Agricultural and Food Chemistry, 57, 4287–4292.CrossRefGoogle Scholar
  13. 13.
    Lee, H., Churey, J., & Worobo, R. (2008). Journal of Applied Microbiology, 105, 663–673.CrossRefGoogle Scholar
  14. 14.
    Chen, H., Wang, L., Su, C., Gong, G., Wang, P., & Yu, Z. (2008). Letters in Applied Microbiology, 47, 180–186.CrossRefGoogle Scholar
  15. 15.
    Moyne, A. L., Shelby, R., Cleveland, T., & Tuzun, S. (2001). Journal of Applied Microbiology, 90, 622–629.CrossRefGoogle Scholar
  16. 16.
    Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., & Cameotra, S. S. (2002). Applied and Environmental Microbiology, 68, 6210–6219.CrossRefGoogle Scholar
  17. 17.
    Liu, X. Y., Yang, S. Z., & Mu, B. Z. (2009). Process Biochemistry, 44, 1144–1151.CrossRefGoogle Scholar
  18. 18.
    Alvarez, F., Castro, M., Príncipe, A., Borioli, G., Fischer, S., Mori, G., et al. (2012). Journal of Applied Microbiology, 112, 159–174.CrossRefGoogle Scholar
  19. 19.
    Meng, Q., Jiang, H., Hanson, L., & Hao, J. (2012). Journal of Applied Microbiology, 113, 1165–1175.CrossRefGoogle Scholar
  20. 20.
    Zhu, Z., Zhang, G., Luo, Y., Ran, W., & Shen, Q. (2012). Bioresource Technology, 112, 254–260.CrossRefGoogle Scholar
  21. 21.
    Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H., & Shin, K. S. (2003). FEMS Microbiology Letters, 223, 47–51.CrossRefGoogle Scholar
  22. 22.
    Besson, F., Peypoux, F., Michel, G., & Delcambe, L. (1978). The Journal of Antibiotics, 31, 284–288.CrossRefGoogle Scholar
  23. 23.
    Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., et al. (2004). Journal of Bacteriology, 186, 1084–1096.CrossRefGoogle Scholar
  24. 24.
    Hiradate, S., Yoshida, S., Sugie, H., Yada, H., & Fujii, Y. (2002). Phytochemistry, 61, 693–698.CrossRefGoogle Scholar
  25. 25.
    Roongsawang, N., Thaniyavarn, J., Thaniyavarn, S., Kameyama, T., Haruki, M., Imanaka, T., et al. (2002). Extremophiles, 6, 499–506.CrossRefGoogle Scholar
  26. 26.
    Volpon, L., Besson, F., & Lancelin, J. M. (1999). European Journal of Biochemistry, 264, 200–210.CrossRefGoogle Scholar
  27. 27.
    Peypoux, F., Pommier, M. T., Das, B. C., Besson, F., Delcambe, L., & Michel, G. (1984). The Journal of Antibiotics, 37, 1600–1604.CrossRefGoogle Scholar
  28. 28.
    Yuan, B., Wang, Z., Qin, S., Zhao, G.-H., Feng, Y. J., Wei, L. H., et al. (2012). Bioresource Technology, 114, 536–541.CrossRefGoogle Scholar
  29. 29.
    Bie, X., Lu, Z., & Lu, F. (2009). Journal of Microbiological Methods, 79, 272–278.CrossRefGoogle Scholar
  30. 30.
    Maget-Dana, R., & Peypoux, F. (1994). Toxicology, 87, 151–174.CrossRefGoogle Scholar
  31. 31.
    Peypoux, F., Besson, F., Michel, G., & Delcambe, L. (1979). The Journal of Antibiotics, 32, 136–140.CrossRefGoogle Scholar
  32. 32.
    Besson, F., Peypoux, F., Michel, G., & Delcambe, L. (1979). The Journal of Antibiotics, 32, 828–832.CrossRefGoogle Scholar
  33. 33.
    Yuan, B., Wang, Z., Qin, S., Zhao, G., Feng, Y. J., Wei, L. H., et al. (2012). Bioresource Technology, 114, 536–541.CrossRefGoogle Scholar
  34. 34.
    Zhang, B., Dong, C., Shang, Q., Han, Y., & Li, P. (2013). Biochimica et Biophysica Acta (BBA)-Biomembranes, 1828, 2230–2237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.College of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
  2. 2.Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijingChina
  3. 3.College of Food Science and Nutritional Engineering, East DistrictChina Agricultural UniversityBeijingChina

Personalised recommendations