Applied Biochemistry and Biotechnology

, Volume 171, Issue 4, pp 927–938 | Cite as

Emerging Approaches in Fermentative Production of Statins

Article

Abstract

Microbial metabolites have many important applications in pharmaceutical and health-care industry. The products of microbial origin are usually produced by submerged fermentation. The solid-state fermentation represents an alternative mode of fermentation, which is increasingly being employed as an alternative to submerged fermentation for metabolite production. The prospect of producing high-value product using low-value raw material offers a substantial premium to switch to these technologies. The cost of statins being one major factor, solid-state fermentation with agro-industrial residues as carbon, nitrogen and support matrix, promises to substantially lower the cost of production. Hence, newer approaches are required to exploit the agro-industrial residues for statin production. The development of these technologies offers an opportunity to exploit low-cost substrates without substantial investment in newer production methodologies. The emerging evidence of beneficial effect of statins in applications other than lipid lowering such as in Alzheimer disease, HIV, age-related dementia, and cancer chemotherapy makes it very important to develop methods for economic production of statins.

Keywords

Statins Agro-industrial residues Submerged fermentation Solid-state fermentation 

References

  1. 1.
    World Health Organization. (2011). Global atlas on cardiovascular disease prevention and control. In S. Mendis, P. Puska, B. Norrving (Eds.). Geneva: World Health Organization.Google Scholar
  2. 2.
    Veillard, N. R., & Mach, F. (2002). Cellular and Molecular Life Sciences, 59, 1771–1786.CrossRefGoogle Scholar
  3. 3.
    Maron, D. J., Fazio, S., & Linton, M. F. (2000). Circulation, 101, 207–213.CrossRefGoogle Scholar
  4. 4.
    Node, K., Fujita, M., Kitakaze, M., Hori, M., & Liao, J. K. (2003). Circulation, 108, 839–843.CrossRefGoogle Scholar
  5. 5.
    Wassmann, S., Laufs, U., Baumer, A. T., Müller, K., Ahlbory, K., Linz, W., et al. (2001). Hypertension, 37, 1450–1457.CrossRefGoogle Scholar
  6. 6.
    Li, X., & Xu, B. (2009). Applied Biochemistry and Biotechnology, 157, 545–553.CrossRefGoogle Scholar
  7. 7.
    Giguere, J. F., & Tremblay, M. J. (2004). Journal of Virology, 78, 12062–12065.CrossRefGoogle Scholar
  8. 8.
    Riad, A., Bien, S., Westermann, D., Becher, P. M., Loya, K., Landmesser, U., et al. (2009). Cancer Research, 69, 695–699.CrossRefGoogle Scholar
  9. 9.
    Ostrowski, S. M., Wilkinson, B. L., Golde, T. E., & Landreth, G. (2007). Journal of Biological Chemistry, 282, 26832–26844.CrossRefGoogle Scholar
  10. 10.
    Wolozin, B., Wang, S. W., Li, N. C., Lee, A., Lee, T. A., & Kazis, L. E. (2007). BMC Medicine, 5, 20.CrossRefGoogle Scholar
  11. 11.
    Puttananjaiah, M. K. H., Dhale, M. A., Gaonkar, V., & Keni, S. (2011). Applied Biochemistry and Biotechnology, 163, 215–222.CrossRefGoogle Scholar
  12. 12.
    Muller, M. (2005). Angewandte Chemie International Edition, 44, 362–365.CrossRefGoogle Scholar
  13. 13.
    Lai, L. S. T., Pan, C. C., & Tzeng, B. K. (2003). Process Biochemistry, 38, 1317–1326.CrossRefGoogle Scholar
  14. 14.
    Lai, L. S. T., Tsai, T. H., Wang, T. C., & Cheng, T. Y. (2005). Enzyme and Microbial Technology, 36, 737–748.CrossRefGoogle Scholar
  15. 15.
    Casas Lopez, J. L., Sanchez Perez, J. A., Fernandez Sevilla, J. M., Acien Fernandez, F. G., Molina Grima, E., & Chisti, Y. (2003). Enzyme and Microbial Technology, 33, 270–277.CrossRefGoogle Scholar
  16. 16.
    Casas Lopez, J. L., Sanchez Perez, J. A., Fernandez Sevilla, J. M., Acien Fernandez, F. G., Molina Grima, E., & Chisti, Y. (2004). Journal of Chemical Technology and Biotechnology, 79, 1119–1126.CrossRefGoogle Scholar
  17. 17.
    Casas Lopez, J. L., Sanchez Perez, J. A., Fernandez Sevilla, J. M., Rodriguez Porcel, E. M., & Chisti, Y. (2005). Journal of Biotechnology, 116, 61–77.CrossRefGoogle Scholar
  18. 18.
    Rodrıguez Porcel, E. M., Casas Lopez, J. L., Sanchez Perez, J. A., Fernandez Sevilla, J. M., Garcıa Sanchez, J. L., & Chisti, Y. (2006). Industrial and Engineering Chemistry Research, 45, 4837–4843.CrossRefGoogle Scholar
  19. 19.
    Rodriguez Porcel, E. M. R., Casas Lopez, J. L., Sanchez Perez, J. A., & Chisti, Y. (2007). Journal of Chemical Technology and Biotechnology, 82, 58–64.CrossRefGoogle Scholar
  20. 20.
    Rodriguez Porcel, E. M. R., Casas Lopez, J. L., Sanchez Perez, J. A., & Chisti, Y. (2008). Journal of Chemical Technology and Biotechnology, 83, 1236–1243.CrossRefGoogle Scholar
  21. 21.
    Gupta, K., Mishra, P. K., & Srivastava, P. (2009). Biotechnology and Bioprocess Engineering, 14, 207–212.CrossRefGoogle Scholar
  22. 22.
    Jia, Z., Zhang, X., & Cao, X. (2009). Asia-Pacific Journal of Chemical Engineering, 4, 672–677.CrossRefGoogle Scholar
  23. 23.
    Jia, Z., Zhang, X., Zhao, Y., & Cao, X. (2009). World Journal of Microbiology and Biotechnology, 25, 1235–1241.CrossRefGoogle Scholar
  24. 24.
    Jia, Z., Zhang, X., Zhao, Y., & Cao, X. (2010). Applied Biochemistry and Biotechnology, 160, 2014–2025.CrossRefGoogle Scholar
  25. 25.
    Sorrentino, F., Roy, I., & Keshavarz, T. (2010). Applied Microbiology and Biotechnology, 88, 65–73.CrossRefGoogle Scholar
  26. 26.
    Pecyna, M., & Bizukojc, M. (2011). Journal of Biotechnology, 151, 77–86.CrossRefGoogle Scholar
  27. 27.
    Miyake, T., Uchitomi, K., Zhang, M. Y., Kono, I., Nozaki, N., Sammoto, H., et al. (2006). Bioscience, Biotechnology, and Biochemistry, 70, 1154–1159.CrossRefGoogle Scholar
  28. 28.
    Sayyad, S. A., Panda, B. P., Javed, S., & Ali, M. (2007). Applied Microbiology and Biotechnology, 73, 1054–1058.CrossRefGoogle Scholar
  29. 29.
    Zaffer Ahmed, M., Panda, B. P., Javed, S., & Ali, M. (2006). Research Journal of Microbiology, 1, 443–447.CrossRefGoogle Scholar
  30. 30.
    Shaligram, N. S., Singh, S. K., Singhal, R. S., Szakacs, G., & Pandey, A. (2008). Biochemical Engineering Journal, 41, 295–300.CrossRefGoogle Scholar
  31. 31.
    Shaligram, N. S., Singh, S. K., Singhal, R. S., Pandey, A., & Szakacs, G. (2009). Applied Biochemistry and Biotechnology, 159, 505–520.CrossRefGoogle Scholar
  32. 32.
    Shaligram, N. S., Singh, S. K., Singhal, R. S., Szakacs, G., & Pandey, A. (2009). Journal of Microbiology and Biotechnology, 19, 690–697.Google Scholar
  33. 33.
    Valera, H. R., Gomes, J., Lakshmi, S., Gururaja, R., Suryanarayan, S., & Kumar, D. (2005). Enzyme and Microbial Technology, 37, 521–526.CrossRefGoogle Scholar
  34. 34.
    Xu, B. J., Wang, Q. J., Jia, X. Q., & Sung, C. K. (2005). Biotechnology and Bioprocess Engineering, 10, 78–84.CrossRefGoogle Scholar
  35. 35.
    Panda, B., Javed, S., & Ali, M. (2009). Biotechnology and Bioprocess Engineering, 14, 123–127.CrossRefGoogle Scholar
  36. 36.
    Tsukahara, M., Shinzato, N., Tamaki, Y., Namihira, T., & Matsui, T. (2009). Applied Biochemistry and Biotechnology, 158, 476–482.CrossRefGoogle Scholar
  37. 37.
    Pei-lian, W., Zhi-nan, X., & Pei-lin, C. (2007). J Zhejiang Univ Science A, 8, 1521–1526.CrossRefGoogle Scholar
  38. 38.
    Banos, J. G., Tomasini, A., Szakacs, G., & Barrios-Gonzalez, J. (2009). Journal of Bioscience and Bioengineering, 108, 105–110.CrossRefGoogle Scholar
  39. 39.
    Pansuriya, R. C., & Singhal, R. S. (2010). Brazilian Journal of Microbiology, 41, 164–172.CrossRefGoogle Scholar
  40. 40.
    Patil, R. H., Krishnan, P., & Maheshwari, V. L. (2011). Natural Product Communications, 6, 183–186.Google Scholar
  41. 41.
    Panda, B. P., Javed, S., & Ali, M. (2010). Food and Bioprocess Technology, 3, 373–378.CrossRefGoogle Scholar
  42. 42.
    Bizukojc, M., & Ledakowicz, S. (2007). Journal of Biotechnology, 130, 422–435.CrossRefGoogle Scholar
  43. 43.
    Bizukojc, M., Pawlowska, B., & Ledakowicz, S. (2007). Journal of Biotechnology, 127, 258–268.CrossRefGoogle Scholar
  44. 44.
    Subhagar, S., Aravindan, R., & Viruthagiri, T. (2010). Food and Bioproducts Processing, 88, 266–276.CrossRefGoogle Scholar
  45. 45.
    Li, S. W., Li, M., Song, H. P., Feng, J. L., & Tai, X. S. (2011). Applied Biochemistry and Biotechnology, 165, 913–925.CrossRefGoogle Scholar
  46. 46.
    Kaur, H., Kaur, A., Saini, H. S., & Chadha, B. S. (2010). Acta Microbiologica et Immunologica Hungarica, 57, 377–391.CrossRefGoogle Scholar
  47. 47.
    Gupta, K., Mishra, P. K., & Srivastava, P. (2007). Biotechnology and Bioprocess Engineering, 12, 140–146.CrossRefGoogle Scholar
  48. 48.
    Rodrıguez Porcel, E., Casas Lopez, J. L., Vilches Ferron, M. A., Sanchez Perez, J. A., Garcıa Sanchez, J. L., & Chisti, Y. (2006). Bioprocess and Biosystems Engineering, 29, 1–5.CrossRefGoogle Scholar
  49. 49.
    Choi, D. B., Cho, K. A., Cha, W. S., & Ryu, S. R. (2004). Biotechnology and Bioprocess Engineering, 9, 171–178.CrossRefGoogle Scholar
  50. 50.
    Ramachandran, S., Singh, S. K., Larroche, C., Soccol, C. R., & Pandey, A. (2007). Bioresource Technology, 98, 2000–2009.CrossRefGoogle Scholar
  51. 51.
    Suryanarayan, S. (2003). Biochemical Engineering Journal, 13, 189–195.CrossRefGoogle Scholar
  52. 52.
    Jahromi, M. F., Liang, J. B., Ho, Y. W., Mohamad, R., Goh, Y. M., & Shokryazdan, P. (2012). Journal of Biomedicine and Biotechnology. doi:10.1155/2012/196264. ID 196264.Google Scholar
  53. 53.
    Venkateswaran, V., & Vijayalakshmi, G. (2010). Journal of Food Science and Technology, 47, 426–431.CrossRefGoogle Scholar
  54. 54.
    Hendrickson, L., Davis, C. R., Roach, C., Nguyen, D. K., Aldrich, T., McAda, P. C., et al. (1999). Chemistry and Biology, 6, 429–439.CrossRefGoogle Scholar
  55. 55.
    Kennedy, J., Auclair, K., Kendrew, S. G., Park, C., Vederas, J. C., & Hutchinson, C. R. (1999). Science, 284, 1368–1372.CrossRefGoogle Scholar
  56. 56.
    Campbell, C. D., & Vederas, J. C. (2010). Biopolymers, 93, 755–763.CrossRefGoogle Scholar
  57. 57.
    Barriuso, J., Nguyen, D. T., Li, J. W. H., Roberts, J. N., MacNevin, G., Chaytor, J. L., et al. (2011). Journal of the American Chemical Society, 133, 8078–8081.CrossRefGoogle Scholar
  58. 58.
    Xie, X., Watanabe, K., Wojcicki, W. A., Wang, C. C. C., & Tang, Y. (2006). Chemistry and Biology, 13, 1161–1169.CrossRefGoogle Scholar
  59. 59.
    Baba, S., Nihira, T., & Hosobuchi, M. (2008). Fungal Genetics and Biology, 45, 1277–1283.CrossRefGoogle Scholar
  60. 60.
    Baba, S., Abe, Y., Suzuki, T., Ono, C., Iwamoto, K., Nihira, T., et al. (2009). Applied Microbiology and Biotechnology, 83, 697–704.CrossRefGoogle Scholar
  61. 61.
    Barrios-Gonzalez, J., Banos, J. G., Covarrubias, A. A., & Garay-Arroyo, A. (2008). Applied Microbiology and Biotechnology, 79, 179–186.CrossRefGoogle Scholar
  62. 62.
    Park, J. W., Lee, J. K., Kwon, T. J., Yi, D. H., Kim, Y. J., Moon, S. H., et al. (2003). Biotechnology Letters, 25, 1827–1831.CrossRefGoogle Scholar
  63. 63.
    Lin, C. L., Tang, Y. L., & Lin, S. M. (2011). Bioresource Technology, 102, 10187–10193.CrossRefGoogle Scholar
  64. 64.
    Fujii, Y., Norihisa, K., Fujii, T., Aritoku, Y., Kagawa, Y., Ibrahim Sallam, K., et al. (2011). Biochemical and Biophysical Research Communications, 404, 511–516.CrossRefGoogle Scholar
  65. 65.
    Zong, H., Zhuge, B., Fang, H., Cao, Y., Mu, L., Fu, W., et al. (2012). Applied Microbiology and Biotechnology, 97(2), 599–609. doi:10.1007/s00253-012-4341-4.CrossRefGoogle Scholar
  66. 66.
    Subhagar, S., Aravindan, R., & Viruthagiri, T. (2009). Engineering Life Science, 9, 303–310.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Microbiology DivisionCSIR-Central Drug Research Institute (CDRI)LucknowIndia
  2. 2.Biotechnology DivisionCSIR-National Institute for Interdisciplinary Science and Technology (NIIST)TrivandrumIndia

Personalised recommendations