Advertisement

Applied Biochemistry and Biotechnology

, Volume 171, Issue 3, pp 616–625 | Cite as

Pigment Production by Filamentous Fungi on Agro-Industrial Byproducts: an Eco-Friendly Alternative

  • Fernanda Cortez Lopes
  • Deise Michele Tichota
  • Jamile Queiroz Pereira
  • Jéferson Segalin
  • Alessandro de Oliveira Rios
  • Adriano BrandelliEmail author
Article

Abstract

The search for new sources of natural pigments has increased, mainly because of the toxic effects caused by synthetic dyes used in food, pharmaceutical, textile, and cosmetic industries. Fungi provide a readily available alternative source of natural pigments. In this context, the fungi Penicillium chrysogenum IFL1 and IFL2, Fusarium graminearum IFL3, Monascus purpureus NRRL 1992, and Penicillium vasconiae IFL4 were selected as pigments producers. The fungal identification was performed using ITS and part of the β-tubulin gene sequencing. Almost all fungi were able to grow and produce water-soluble pigments on agro-industrial residues, with the exception of P. vasconiae that produced pigments only on potato dextrose broth. The production of yellow pigments was predominant and the two strains of P. chrysogenum were the largest producers. In addition, the production of pigments and mycotoxins were evaluated in potato dextrose agar using TOF-MS and TOF-MS/MS. Metabolites as roquefortine C, chrysogine were found in both extracts of P. chrysogenum, as well fusarenone X, diacetoxyscirpenol, and neosolaniol in F. graminearum extract. In the M. purpureus extract, the pigments monascorubrin, rubropunctatin, and the mycotoxin citrinin were found. The crude filtrates have potential to be used in the textile industry; nevertheless, additional pigment purification is required for food and pharmaceutical applications.

Keywords

Agro-industrial wastes Pigments Eco-friendly TOF-MS Fungi 

Notes

Acknowledgments

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support. We also thank Dr. Patricia Valente da Silva, Dr. Charley Christian Staats, Dr. Fernanda Stanisçuaski (UFRGS), and Dr. João Lúcio de Azevedo (ESALQ/USP) for the insightful suggestions on the manuscript and Dr. Nelson Netto (UNICRUZ) for providing some fungi for our mycology collection.

Supplementary material

12010_2013_392_MOESM1_ESM.doc (997 kb)
Fig. S1 (DOC 997 kb)

References

  1. 1.
    Radzio, R., & Kück, U. (1997). Process Biochemistry, 32, 529–539.CrossRefGoogle Scholar
  2. 2.
    Hajjaj, H., Blanc, P. J., Goma, G., & François, J. (1998). FEMS Microbiology Letters, 164, 195–200.CrossRefGoogle Scholar
  3. 3.
    Mapari, S. A. S., Meyer, A. S., & Thrane, U. (2008). Biotechnology Letters, 30, 2183–2190.CrossRefGoogle Scholar
  4. 4.
    Rajasekaran, R., Chandrasekaran, R., & Muthuselvam, M. (2008). Advances in Biotechnology, 7, 19–25.CrossRefGoogle Scholar
  5. 5.
    Pandey, A., Soccol, C. R., Nigam, P., & Soccol, V. T. (2000). Bioresource Technology, 74, 69–80.CrossRefGoogle Scholar
  6. 6.
    Soccol, C. R., & Vandenberghe, L. P. S. (2003). Biochemical Engineering Journal, 13, 205–218.CrossRefGoogle Scholar
  7. 7.
    Daroit, D. J., Silveira, S. T., Hertz, P. F., & Brandelli, A. (2007). Process Biochemistry, 42, 904–908.CrossRefGoogle Scholar
  8. 8.
    Singhania, R.R.; Soccol, C.R.; Pandley, A. (2008) Application of tropical agro-industrial residues as substrate for solid-state fermentation processes. In: Current developments in solid-state fermentation, Springer Science+Business, New York.Google Scholar
  9. 9.
    Lopes, F. C., Dedavid e Silva, L. A., Tichota, D. M., Daroit, D. J., Velho, R. V., Pereira, J. Q., Côrrea, A. P. F., & Brandelli, A. (2011). Enzyme Research. doi: 10.4061/2011/487093.
  10. 10.
    Horisawa, S., Sakuma, Y., & Doi, S. (2009). Journal of Wood Science, 55, 133–138.CrossRefGoogle Scholar
  11. 11.
    Glass, N. L., & Donaldson, G. C. (1995). Applied and Environmental Microbiology, 61, 1323–1330.Google Scholar
  12. 12.
    Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.Google Scholar
  13. 13.
    Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.CrossRefGoogle Scholar
  14. 14.
    Silveira, S. T., Daroit, D. J., & Brandelli, A. (2008). LWT Food Science Techonology, 41, 170–174.CrossRefGoogle Scholar
  15. 15.
    Dedavid e Silva, L. A., Lopes, F. C., Silveira, S. T., & Brandelli, A. (2009). Applied Biochemistry Biotechnology, 152, 295–305.CrossRefGoogle Scholar
  16. 16.
    Mapari, S. A. S., Meyer, A. S., & Thrane, U. (2006). Journal of Agricultural and Food Chemistry, 54, 7027–7035.CrossRefGoogle Scholar
  17. 17.
    Senyuva, H. Z., Gilbert, J., & Öztürkoglu, S. (2008). Analytica Chimica Acta, 617, 97–106.CrossRefGoogle Scholar
  18. 18.
    Velmurugan, P., Kamala-Kannan, S., Balachandar, V., Lakshmanaperumalsamy, P., Chae, J. C., & Oh, B. T. (2009). Carbohydrate Polymers, 79, 262–268.CrossRefGoogle Scholar
  19. 19.
    Fungaro, M. H. P. (2000). Biotecnologica Ciencias Desenvol, 3, 12–16.Google Scholar
  20. 20.
    Einax, E., & Voigt, K. (2003). Organisms, Diversity and Evolution, 3, 185–194.CrossRefGoogle Scholar
  21. 21.
    Bastola, D. R., Out, H. H., Doukas, S. E., Sayood, K., Hinrichs, S. H., & Iwen, P. C. (2004). Mycological Research, 108, 117–125.CrossRefGoogle Scholar
  22. 22.
    Inuma, T., Khodaparast, S. A., & Takamatsu, S. (2007). Molecular Phylogenetics and Evolution, 44, 741–751.CrossRefGoogle Scholar
  23. 23.
    Mapari, S. A. S., Hansen, M. E., Meyer, A. S., & Thrane, U. (2008). Journal of Agricultural and Food Chemistry, 56, 9981–9989.CrossRefGoogle Scholar
  24. 24.
    Wolf, F. T., Kim, Y. T., & Jones, E. A. (1960). Physiological Plant, 13, 621–627.CrossRefGoogle Scholar
  25. 25.
    Mapari, S. A. S., Meyer, A. S., Thrane, U., & Frisvad, J. (2009). Microbial Cell Factories, 8, 1–15.CrossRefGoogle Scholar
  26. 26.
    Asilonu, E., Bucke, C., & Keshavarz, T. (2000). Biotechnology Letters, 22, 931–936.CrossRefGoogle Scholar
  27. 27.
    Nielsen, K. F., & Smedsgaard, J. (2003). Journal of Chromatography. A, 1002, 111–136.CrossRefGoogle Scholar
  28. 28.
    Vishwanath, V., Sulyok, M., Labuda, R., Bicker, W., & Krska, R. (2009). Analytical and Bioanalytical Chemistry, 395, 1355–1372.CrossRefGoogle Scholar
  29. 29.
    Sulyok, M., Krska, R., & Schuhmacher, R. (2010). Food Chemistry, 119, 408–416.CrossRefGoogle Scholar
  30. 30.
    Rasmussen, R. R., Rasmussen, P. H., Larsen, T. O., Bladt, T. T., & Binderup, M. L. (2011). Food and Chemical Toxicololgy, 49, 31–44.CrossRefGoogle Scholar
  31. 31.
    Tor, E. R., Puschner, B., Filigenzi, M. S., Tiwary, A. K., & Poppenga, R. H. (2006). Analytical Chemistry, 78, 4624–4629.CrossRefGoogle Scholar
  32. 32.
    Paterson, R. R. M., Venâncio, A., & Lima, N. (2006). Revista Iberoamericana de Micologia, 23, 155–159.CrossRefGoogle Scholar
  33. 33.
    Prabha, D., D’Souza, L., Kamat, T., Rodrigues, C., & Naik, C. G. (2009). Indian Journal of Marine Science, 38, 38–44.Google Scholar
  34. 34.
    Lopes, F. C., Tichota, D. M., Sauter, I. P., Meira, S. M. M., Segalin, J., Rott, M. B., et al. (2013). Annals of Microbiology, 63, 771–778.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Fernanda Cortez Lopes
    • 1
  • Deise Michele Tichota
    • 1
  • Jamile Queiroz Pereira
    • 1
  • Jéferson Segalin
    • 2
  • Alessandro de Oliveira Rios
    • 3
  • Adriano Brandelli
    • 1
    Email author
  1. 1.Laboratório de Bioquímica e Microbiologia Aplicada, Departamento de Ciência de Alimentos (ICTA)Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Unidade Química de Proteínas e Espectrometria de Massas (UNIPROTE-MS), Centro de BiotecnologiaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Laboratório de Análise de Alimentos, Departamento de Ciência de Alimentos (ICTA)Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations