Advertisement

Applied Biochemistry and Biotechnology

, Volume 171, Issue 2, pp 532–542 | Cite as

Curing the Plasmid pMC1 from the Poly (γ-glutamic Acid) Producing Bacillus amyloliquefaciens LL3 Strain Using Plasmid Incompatibility

  • Jun Feng
  • Yanyan Gu
  • Jingqiang Wang
  • Cunjiang SongEmail author
  • Chao Yang
  • Hui Xie
  • Wei Zhang
  • Shufang WangEmail author
Article

Abstract

Bacillus amyloliquefaciens LL3 is a glutamate-independent poly-γ-glutamic acid (γ-PGA) producing strain which consists of a circular chromosome (3,995,227 bp) and an endogenous plasmid pMC1 (6,758 bp). The study of the function of native plasmid and the genome-size reduction of the B. amyloliquefaciens LL3 strain requires elimination of the endogenous plasmid. Traditional plasmid-curing procedures using sodium dodecyl sulfate (SDS) or acridine orange combined with heat treatment have been shown to be ineffective in this strain. Plasmid incompatibility is an effective method for curing which has been studied before. In our research, the hypothetical Rep protein gene and the origin of replication of the endogenous plasmid were cloned into the temperature-sensitive vector yielding the incompatible plasmid pKSV7-rep-ori. This plasmid was transformed into LL3 by electroporation. The analysis of the strain bearing incompatible plasmids after incubation at 30 °C for 30 generations showed the production of plasmid cured strains. High frequency of elimination was achieved with more than 93 % of detected strains showing to be plasmid-cured. This is the first report describing plasmid cured in a γ-PGA producing strain using this method. The plasmid-cured strains showed an increase of γ-PGA production by 6 % and led to a yield of 4.159 g/l, compared to 3.918 g/l in control and cell growth increased during the early stages of the exponential phase. Gel permeation chromatography (GPC) characterization revealed that the γ-PGA produced by plasmid-cured strains and the wild strains were identical in terms of molecular weight. What is more, the further study of plasmid function showed that curing of the endogenous plasmid did not affect its sporulation efficiency.

Keywords

Plasmid curing Plasmid incompatibility Poly-γ-glutamic acid Sporogenesis 

Notes

Acknowledgments

This study was financially supported by National key 296 Basic Research Program of China (“973”-Program) 2012CB725204, National High Technology Research and Development Program of China (“863”-Program) 2012AA021505, Natural Science Foundation of China Grant Nos. 31070039, 31170030, and 51073081, Project of Tianjin, China (11JCYBJC09500).

References

  1. 1.
    Ashiuchi, M., & Misono, H. (2002). Biochemistry and molecular genetics of poly-γ-glutamate synthesis. Applied Microbiology and Biotechnology, 59, 9–14.CrossRefGoogle Scholar
  2. 2.
    Shih, I. L., & Van, Y. T. (2001). The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79, 207–225.CrossRefGoogle Scholar
  3. 3.
    Cao, M. F., Geng, W. T., Liu, L., Song, C. J., Xie, H., Guo, W. B., Jin, Y. H., & Wang, S. F. (2011). Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresource Technology, 102, 4251–4257.CrossRefGoogle Scholar
  4. 4.
    Geng, W. T., Cao, M. F., Song, C. J., Xie, H., Liu, L., Yang, C., Feng, J., Zhang, W., Jin, Y. H., Du, Y., & Wang, S. F. (2011). Complete genome sequence of Bacillus amyloliquefaciens LL3, which exhibits glutamic acid-independent production of poly-γ-glutamic acid. Journal of Bacteriology, 193, 3393–3394.CrossRefGoogle Scholar
  5. 5.
    Nojiri, H., Shintani, M., & Mori, T. (2004). Divergence of mobile genetic elements involved in the distribution of xenobiotic-catabolic capacity. Applied Microbiology and Biotechnology, 64, 154–174.CrossRefGoogle Scholar
  6. 6.
    Rotger, R., & Casadesus, J. (1999). The virulence plasmids of Salmonella. International Microbiology, 2, 177–184.Google Scholar
  7. 7.
    Perego, M., Hanstein, C., Welsh, K. M., Djavakhishvili, T., Glaser, P., & Hoch, J. A. (1994). Multiple protein-aspartate phosphatases provide a mechanism for the integration of diverse signals in the control of development in B. subtilis. Cell, 79, 1047–1055.CrossRefGoogle Scholar
  8. 8.
    Jiang, M., Grau, R., & Perego, M. (2000). Differential processing of propeptide inhibitors of Rap phosphatases in Bacillus subtilis. Journal of Bacteriology, 182, 303–310.CrossRefGoogle Scholar
  9. 9.
    Smits, W. K., Bongiorni, C., Veening, J. W., Hamoen, L. W., Kuipers, O. P., & Perego, M. (2007). Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Molecular Microbiology, 65, 103–120.CrossRefGoogle Scholar
  10. 10.
    Perego, M. (2001). A new family of aspartyl phosphate phosphatases targeting the sporulation transcription factor Spo0A of Bacillus subtilis. Molecular Microbiology, 42, 133–143.CrossRefGoogle Scholar
  11. 11.
    Ghosh, S., Mahapatra, N. R., Ramamurthy, T., & Banerjee, P. C. (2000). Plasmid curing from an acidophilic bacterium of the genus Acidocella. FEMS Microbiology Letters, 183, 271–274.CrossRefGoogle Scholar
  12. 12.
    EI-Mansi, M., Anderson, K. J., Inche, C. A., Knowles, L. K., & Platt, D. J. (2000). Isolation and curing of the Klebsiella pneumonia large indigenous plasmid using sodium dodecyl sulphate. Research in Microbiology, 151, 201–208.CrossRefGoogle Scholar
  13. 13.
    Hara, T., Aumayr, A., Fujio, Y., & Ueda, S. (1982). Elimination of plasmid-linked polyglutamate production by Bacillus subtilis (natto) with acridine orange. Applied and Environment Microbiology, 44, 1456–1458.Google Scholar
  14. 14.
    Spengler, G., Molnár, A., Schelz, Z., Amaral, L., Sharples, D., & Molnár, J. (2006). The mechanism of plasmid curing in bacteria. Current Drug Targets, 7, 823–841.CrossRefGoogle Scholar
  15. 15.
    Kulkarni, R. S., & Kanekar, P. P. (1998). Effects of some curing agents on phenotypic stability in Pseudomonas putida degrading ε-caprolactam. World Journal of Microbiology and Biotechnology, 14, 255–257.CrossRefGoogle Scholar
  16. 16.
    Imre, A., Olasz, F., Kiss, J., & Nagy, B. (2006). A novel transposon-based method for elimination of large bacterial plasmids. Plasmid, 55, 235–241.CrossRefGoogle Scholar
  17. 17.
    Rajini Rani, D. B., & Mahadevan, A. (1992). Plasmid mediated metal and antibiotic resistance in marine pseudomonas. Biometals, 5, 73–80.CrossRefGoogle Scholar
  18. 18.
    Novick, R. P. (1987). Plasmid incompatibility. Microbiology and Molecualr Biology Reviews, 51, 381–395.Google Scholar
  19. 19.
    Uraji, M., Suzuki, K., & Yoshida, K. (2002). A novel plasmid curing method using incompatibility of plant pathogenic Ti plasmids in Agrobacterium tumefaciens. Genes & Genetic Systems, 77, 1–9.CrossRefGoogle Scholar
  20. 20.
    Baker, T. A., & Bell, S. P. (1998). Polymerases and the replisome: machines within machines. Cell, 92, 295–305.CrossRefGoogle Scholar
  21. 21.
    Smith, K., & Youngman, P. (1992). Use a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie, 74, 705–711.CrossRefGoogle Scholar
  22. 22.
    Cliff, J. B., Jarman, K. H., Valentine, N. B., Golledge, S. L., Gaspar, D. J., Wunschel, D. S., & Wahl, K. L. (2005). Differentiation of spores of Bacillus subtilis grown in different media by elemental characterization using Time-of-Flight secondary ion mass spectrometry. Appllied and Environment Microbiology, 71, 6524–6530.CrossRefGoogle Scholar
  23. 23.
    Fay, A., & Dworkin, J. (2009). Bacillus subtilis homologs of MviN (MurJ), the putative Escherichia coli lipid II flippase, are not essential for growth. Journal of Bacteriology, 191, 6020–6028.CrossRefGoogle Scholar
  24. 24.
    Kubota, H., Matsunobu, T., Uotani, K., Takebe, H., Satoh, A., Tanaka, T., & Taniguchi, M. (1993). Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01. Bioscience, Biotechnology, and Biochemistry, 57, 1212–1213.CrossRefGoogle Scholar
  25. 25.
    Bouanchaud, D. H., Scavizzi, M. R., & Chabbert, Y. A. (1969). Elimination of ethidium bromide of antibiotic resistance in Enterobacteria and Staphylococci. Journal of General Microbiology, 54, 417–425.CrossRefGoogle Scholar
  26. 26.
    Mchuge, G. L., & Swartz, M. N. (1977). Elimination of plasmids from several bacterial species by novobiocin. Antimicrobial Agents and Chemotherapy, 12, 423–426.CrossRefGoogle Scholar
  27. 27.
    Pickett, M. A., Everson, J. S., Pead, P. J., & Clarke, I. N. (2005). The plasmids of Chlamydia trachomatis and Chlamydophila pneumoniae (N16): accurate determination of copy number and the paradoxical effect of plasmid-curing agents. Microbiology, 151, 893–903.CrossRefGoogle Scholar
  28. 28.
    Posno, M., Leer, R. J., van Luijk, N., van Giezen, M. J., Heuvelmans, P. T. H. M., Lokman, B. C., & Pouwels, P. H. (1991). Incompatibility of Lactobacillus vectors with replicons derived from small cryptic Lactobacillus plasmids and segregational instability of the introduced vectors. Applied and Environment Microbiology, 57, 1822–1828.Google Scholar
  29. 29.
    Meijer, W. J., de Boer, A. J., van Tongeren, S., Venema, G., & Bron, S. (1995). Nucleic Acids Research, 23, 3214–3223.CrossRefGoogle Scholar
  30. 30.
    Mueller, J. P., Bukusoglu, G., & Sonenshein, A. L. (1992). Transcriptional regulation of Bacillus subtilis glucose starvation-inducible genes: control of gsiA by the ComP-ComA signal transduction system. Journal of Bacteriology, 174, 4361–4373.Google Scholar
  31. 31.
    Mizoguchi, H., Mori, H., & Fujio, T. (2007). Biotechnology and Applied Biochemistry, 46, 157–167.CrossRefGoogle Scholar
  32. 32.
    Mizoguchi, H., Sawano, Y., Kato, J., & Mori, H. (2008). Superpositioning of deletions promotes growth of Escherichia coli with a reduced genome. DNA Research, 15, 277–284.CrossRefGoogle Scholar
  33. 33.
    Morimoto, T., Kadoya, R., Endo, K., Tohata, M., Sawada, K., Liu, S. G., Ozawa, T., Kodama, T., Kakeshida, H., Kageyama, Y., Manabe, K., Kanaya, K., Ara, K., Ozaki, K., & Ogasawara, N. (2008). Enhanced recombinant protein productivity by genome reduction in Bacillus subtilis. DNA Research, 15, 73–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jun Feng
    • 1
  • Yanyan Gu
    • 1
  • Jingqiang Wang
    • 1
  • Cunjiang Song
    • 1
    Email author
  • Chao Yang
    • 1
  • Hui Xie
    • 1
  • Wei Zhang
    • 1
  • Shufang Wang
    • 2
    Email author
  1. 1.Key Laboratory of Molecular Microbiology and Technology for Ministry of EducationNankai UniversityTianjinChina
  2. 2.State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina

Personalised recommendations