Advertisement

Applied Biochemistry and Biotechnology

, Volume 171, Issue 1, pp 80–92 | Cite as

Carbohydrate Binding and Unfolding of Spatholobus parviflorus Lectin: Fluorescence and Circular Dichroism Spectroscopic Study

  • Geethanandan K.
  • Abhilash Joseph
  • Sadasivan C.
  • M. HaridasEmail author
Article

Abstract

Biophysical and carbohydrate binding studies have been carried out on a lectin of Spatholobus parviflorus (SPL) seeds isolated by affinity chromatography on cross-linked guar gum. It agglutinated erythrocytes of all ABO blood groups. SDS-PAGE, both in reducing and non-reducing conditions, showed two bands with MW of 29 and 31 kDa. MALDI TOF analysis revealed two peaks at 60 and 120 kDa, indicating that SPL is a hetero-dimeric tetramer. Temperature and pH stability studies revealed that SPL is a thermostable protein and its lectin activity is unaffected in the temperature range of 0–70 °C. Its activity was maximal in the pH range of 7–8. Unfolding studies with different denaturants like urea and guanidine hydrochloride indicated its globular nature and the presence of tryptophan in the highly hydrophobic area, which could be correlated to the results of fluorescence spectroscopic studies. The effect of carbohydrate binding on the lectin, shown by circular dichroism spectra, indicated the changes in its secondary and tertiary structures. SPL exerted anti-fungal activity against Aspergillus sp.

Keywords

Spatholobus parviflorus Anti-fungal activity Circular dichroism Guar gum 

Notes

Acknowledgments

The authors would like to acknowledge SARD, KSCSTE for granting the chromatographic facility and Molecular Biophysics Unit, IISc, Bangalore for fluorescence, CD, X-ray diffraction, and MALDI TOF data.

References

  1. 1.
    Liener, I. E., Sharon, N., & Goldstein, I. J. (1986). The lectins: properties, functions, and applications in biology and medicine. Orlando: Academic.Google Scholar
  2. 2.
    Loris, R., Hamelryck, T., Bouckaert, J., & Wyns, L. (1998). Biochimica et Biophysica Acta, 1383, 9–36.CrossRefGoogle Scholar
  3. 3.
    Vijayan, M., & Chandra, N. (1999). Current Opinion in Structural Biology, 9, 707–714.CrossRefGoogle Scholar
  4. 4.
    Nishi, N., Shoji, H., Seki, M., Itoh, A., Miyanaka, H., Yuube, K., Hirashima, M., & Nakamura, T. (2003). Glycobiology, 13, 755–763.CrossRefGoogle Scholar
  5. 5.
    Sharon, N., & Lis, H. (2004). Glycobiology, 14, 53–62R.Google Scholar
  6. 6.
    Bies, C., Lehr, C.-M., & Woodley, J. F. (2004). Advanced Drug Delivery Reviews, 56, 425–435.CrossRefGoogle Scholar
  7. 7.
    Jepson, M. A., Clark, M. A., & Hirst, B. H. (2004). Advanced Drug Delivery Reviews, 56, 511–525.CrossRefGoogle Scholar
  8. 8.
    Chandra, N. R., Kumar, N., Jeyakani, J., Singh, D. D., Gowda, S. B., & Prathima, M. N. (2006). Glycobiology, 16, 938–946.CrossRefGoogle Scholar
  9. 9.
    Rini, J. M. (1995). Annual Review of Biophysics and Biomolecular Structure, 24, 551–577.CrossRefGoogle Scholar
  10. 10.
    Weis, W. I., & Drickamer, K. (1996). Annual Review of Biochemistry, 65, 441–473.CrossRefGoogle Scholar
  11. 11.
    Lis, H., & Sharon, N. (1998). Chemical Reviews, 98, 637–674.CrossRefGoogle Scholar
  12. 12.
    Rüdiger, H., & Gabius, H. J. (2001). Glycoconjugate Journal, 18, 589–613.CrossRefGoogle Scholar
  13. 13.
    Van Damme, E. J., Roy, S., Barre, A., Citores, L., Mostafapous, K., Rougé, P., Van Leuven, F., Girbés, T., Goldstein, I. J., & Peumans, W. J. (1997). European Journal of Biochemistry, 245, 648–655.CrossRefGoogle Scholar
  14. 14.
    Abdullaev, F. I., & Gonzalez de Mejia, E. (1997). Natural Toxins, 5, 157–163.CrossRefGoogle Scholar
  15. 15.
    Rubinstein, N., Ilarregui, J. M., Toscano, M. A., & Rabinovich, G. A. (2004). Tissue Antigens, 64, 1–12.CrossRefGoogle Scholar
  16. 16.
    Herre, J., Willment, J. A., Gordon, S., & Brown, G. D. (2004). Critical Reviews in Immunology, 24, 193–203.CrossRefGoogle Scholar
  17. 17.
    Macedo, M. L. R., Damico, D. C. S., Freire, M., Das, G. M., Toyama, M. H., Marangoni, S., & Novello, J. C. (2003). J. Agric. Food Chemistry, 51, 2980–2986.Google Scholar
  18. 18.
    Etzler, M. E. (1985). Annual Review of Plant Physiology, 36, 209–234.CrossRefGoogle Scholar
  19. 19.
    Sharon, N., & Lis, H. (2004). Glycobiology, 14, 53–62.CrossRefGoogle Scholar
  20. 20.
    Lis, H., & Sharon, N. (1984). Biology of Carbohydrates. (John Wiley and Sons). New York, 2, 1–85.Google Scholar
  21. 21.
    Loganathan, D., Osborne, S. E., Glick, G. D., & Goldstein, I. J. (1992). Archives of Biochemistry and Biophysics, 299, 268–274.CrossRefGoogle Scholar
  22. 22.
    Ourth, D. D., Narra, M. B., & Chung, K. T. (2005). Biochemical and Biophysical Research Communications, 335, 1085–1089.CrossRefGoogle Scholar
  23. 23.
    Fenton-Navarro, B., García-Hernández, E., Heimer, E., Aguilar, M. B., Rodríguez-A, C., Arreguín-Espinosa, R., & Falcón, A. (2003). Toxicon, 42, 525–532.CrossRefGoogle Scholar
  24. 24.
    Fullmer, J. M., Riedl, M. S., Higgins, L., & Elde, R. (2004). NeuroReport, 15, 1705–1709.CrossRefGoogle Scholar
  25. 25.
    Gerlach, D., Schlott, B., Zähringer, U., & Schmidt, K.-H. (2005). FEMS Immunol. Med. Microbiol., 43, 223–232.Google Scholar
  26. 26.
    Iwama, M., Ogawa, Y., Sasaki, N., Nitta, K., Takayanagi, Y., Ohgi, K., Tsuji, T., & Irie, M. (2001). Biological and Pharmaceutical Bulletin, 24, 978–981.CrossRefGoogle Scholar
  27. 27.
    De Mejía, E. G., & Prisecaru, V. I. (2005). Critical Reviews in Food Science and Nutrition, 45, 425–445.CrossRefGoogle Scholar
  28. 28.
    Singh, T., Wu, J. H., Peumans, W. J., Rougé, P., Van Damme, E. J. M., Alvarez, R. A., Blixt, O., & Wu, A. M. (2006). The Biochemical Journal, 393, 331–341.CrossRefGoogle Scholar
  29. 29.
    Ciopraga, J., Gozia, O., Tudor, R., Brezuica, L., & Doyle, R. J. (1999). Biochimica et Biophysica Acta, 1428, 424–432.CrossRefGoogle Scholar
  30. 30.
    Ye, X. Y., Ng, T. B., Tsang, P. W., & Wang, J. (2001). Journal of Protein Chemistry, 20, 367–375.CrossRefGoogle Scholar
  31. 31.
    Hatakeyama, T., Suenaga, T., Eto, S., Niidome, T., & Aoyagi, H. (2004). Journal of Biochemistry, 135, 65–70.CrossRefGoogle Scholar
  32. 32.
    Balzarini, J., Neyts, J., Schols, D., Hosoya, M., Van Damme, E., Peumans, W., & De Clercq, E. (1992). Antiviral Research, 18, 191–207.CrossRefGoogle Scholar
  33. 33.
    Wong, J. H., & Ng, T. B. (2005). Archives of Biochemistry and Biophysics, 439, 91–98.CrossRefGoogle Scholar
  34. 34.
    Dalla Pellegrina, C., Rizzi, C., Mosconi, S., Zoccatelli, G., Peruffo, A., & Chignola, R. (2005). Toxicology and Applied Pharmacology, 207, 170–178.CrossRefGoogle Scholar
  35. 35.
    Komath, S. S., & Swamy, M. J. (1998). Current Science, 75, 608–611.Google Scholar
  36. 36.
    Geethanandan, K., Abhilash, J., Bharath, S. R., Sadasivan, C., & Haridas, M. (2011). Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 67, 700–702.CrossRefGoogle Scholar
  37. 37.
    Geethanandan, K., Abhilash, J., Bharath, S. R., Sadasivan, C., & Haridas, M. (2011). International Journal of Biological Macromolecules, 49, 992–998.CrossRefGoogle Scholar
  38. 38.
    Appukuttan, P. S., Surolia, A., & Bachawat, B. K. (1977). Indian J. Biochem. Biophys., 14, 382–384.Google Scholar
  39. 39.
    Silva, J. A., Damico, D. C. S., Baldasso, P. A., Mattioli, M. A., Winck, F. V., Fraceto, L. F., Novello, J. C., & Marangoni, S. (2007). The Protein Journal, 26, 193–201.CrossRefGoogle Scholar
  40. 40.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  41. 41.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The Journal of Biological Chemistry, 193, 265–275.Google Scholar
  42. 42.
    Morris, D. L. (1948). Science, 107, 254–255.CrossRefGoogle Scholar
  43. 43.
    Gozia, O., Ciopraga, J., Bentia, T., Lungu, M., Zamfirescu, I., Tudor, R., Roseanu, A., & Nitu, F. (1993). C. R. Acad. Sci. III. Sci. Vie., 316, 788–792.Google Scholar
  44. 44.
    Ngai, P. H. K., & Ng, T. B. (2007). Applied Microbiology and Biotechnology, 74, 366–371.CrossRefGoogle Scholar
  45. 45.
    Sultan, N. A. M., Rao, R. N., Nadimpalli, S. K., & Swamy, M. J. (2006). Biochimica et Biophysica Acta, 1760, 1001–1008.CrossRefGoogle Scholar
  46. 46.
    Wongkham, S., Wongkham, C., Trisonthi, C., Boonsiri, P., Simasathiansophon, S., & Atisook, K. (1994). Plant Science, 103, 121–126.CrossRefGoogle Scholar
  47. 47.
    Sinha, S., Mitra, N., Kumar, G., Bajaj, K., & Surolia, A. (2005). Biophysical Journal, 88, 1300–1310.CrossRefGoogle Scholar
  48. 48.
    Ye, X. Y., Ng, T. B., Tsang, P. W., & Wang, J. (2001). Journal of Protein Chemistry, 20, 367–375.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Geethanandan K.
    • 3
  • Abhilash Joseph
    • 1
    • 2
  • Sadasivan C.
    • 1
    • 2
  • M. Haridas
    • 1
    • 2
    Email author
  1. 1.Inter University Centre for BioscienceKannur UniversityKeralaIndia
  2. 2.Department of Biotechnology and MicrobiologyKannur UniversityKeralaIndia
  3. 3.Molecular Biophysics UnitIndian Institute of ScienceBangaloreIndia

Personalised recommendations