Applied Biochemistry and Biotechnology

, Volume 171, Issue 5, pp 1094–1107 | Cite as

In Situ Biphasic Extractive Fermentation for Hexanoic Acid Production from Sucrose by Megasphaera elsdenii NCIMB 702410



Hexanoic acid production by a bacterium using sucrose as an economic carbon source was studied under conditions in which hexanoic acid was continuously extracted by liquid–liquid extraction. Megasphaera elsdenii NCIMB 702410, selected from five M. elsdenii strains, produced 4.69 g l−1 hexanoic acid in a basal medium containing sucrose. Production increased to 8.19 g l−1 when the medium was supplemented by 5 g l−1 sodium butyrate. A biphasic liquid–liquid extraction system with 10 % (v/v) alamine 336 in oleyl alcohol as a solvent was evaluated in a continuous stirred-tank reactor held at pH 6. Over 90 % (w/w) of the hexanoic acid in a 0.5 M aqueous solution was transferred to the extraction solvent within 10 h. Cell growth was not significantly inhibited by direct contact of the fermentation broth with the extraction solvent. The system produced 28.42 g l−1 of hexanoic acid from 54.85 g l−1 of sucrose during 144 h of culture, and 26.52 and 1.90 g l−1 of hexanoic acid was accumulated in the extraction solvent and the aqueous fermentation broth, respectively. The productivity and yield of hexanoic acid were 0.20 g l−1 h−1 and 0.50 g g−1 sucrose, respectively.


Megasphaera elsdenii NCIMB 702410 Hexanoic acid In situ biphasic extraction Alamine 336 Batch culture 



This work was supported by the research fund of Hanyang University (HY-2011-N) and by the Advanced Biomass R&D Center (ABC) of the Global Frontier Project funded by the Ministry of Education, Science and Technology of Korea (2012053893).


  1. 1.
    Levy, P. F., Sanderson, J. E., Ashare, E. & de Riel, S. R. (1983). In Wise, D. L. (Ed.), CRC liquid fuels developments (pp. 159–188). Boca Raton: CRCGoogle Scholar
  2. 2.
    Aly, M., & Baumgarten, E. (2001). Applied catalysis A: general, 210, 1–12.CrossRefGoogle Scholar
  3. 3.
    Wasewar, K. L., & Shende, D. Z. (2010). Journal of Chemical & Engineering Data, 55, 4121–4125.CrossRefGoogle Scholar
  4. 4.
    Gervajio, G. C. (2005). In Shahidi, F. (Ed.), Bailey’s industrial oil and fat products, vol. 6. New York: WileyGoogle Scholar
  5. 5.
    Kenealy, W. R., Cao, Y., & Weimer, P. J. (1995). Applied Microbiology and Biotechnology, 44, 507–513.CrossRefGoogle Scholar
  6. 6.
    Holdeman, L. V., Cato, E. P., & Moore, W. E. C. (1977). Anaerobe laboratory manual, (4th ed.). Blacksburg: Virginia Polytechnic Institute and State University.Google Scholar
  7. 7.
    Barker, H. A., & Taha, S. M. (1942). Journal of Bacteriology, 43, 347–363.Google Scholar
  8. 8.
    Kenealy, W. R., & Waselefsky, D. M. (1985). Archives of Microbiology, 141, 187–194.CrossRefGoogle Scholar
  9. 9.
    Jeon, B. S., Kim, B. C., Um, Y. & Sang, B. I. (2010). Applied Microbiology and Biotechnology, 88, 1161–1167.Google Scholar
  10. 10.
    Rogosa, M. (1971). International Journal of Systematic Bacteriology, 21, 187–189.CrossRefGoogle Scholar
  11. 11.
    Marounek, M., Fliegrova, K., & Bartos, S. (1989). Applied and Environmental Microbiology, 55, 1570–1573.Google Scholar
  12. 12.
    Giesecke, D., Wiesmayr, S., & Ledinek, M. (1970). Journal of General Microbiology, 64, 123–126.CrossRefGoogle Scholar
  13. 13.
    Stanton, T. B., & Humphrey, S. B. (2003). Applied and Environmental Microbiology, 69, 3874–3882.CrossRefGoogle Scholar
  14. 14.
    Sugihara, P. T., Sutter, V. L., Attebery, H. R., Bricknell, K. S., & Finegold, S. M. (1974). Applied Microbiology, 27, 274–275.Google Scholar
  15. 15.
    Soto-Cruz, O., Chavez-Rivera, R., & Saucedo-Castaneda, G. (2001). Brazilian Archives of Biology and Technology, 44, 179–184.CrossRefGoogle Scholar
  16. 16.
    Counotte, G. H., Prins, R. A., Janssen, R. H., & Debie, M. J. (1981). Applied and Environmental Microbiology, 42, 649–655.Google Scholar
  17. 17.
    Tsukahara, T., Hashizume, K., Koyama, H., & Ushida, K. (2006). Animal Science Journal, 77, 454–461.CrossRefGoogle Scholar
  18. 18.
    Kim, Y. J., Liu, R. H., Rychlik, J. L., & Russell, J. B. (2002). Journal of Applied Microbiology, 92, 976–982.CrossRefGoogle Scholar
  19. 19.
    Khan, M. A. (2006). PhD thesis, Electronic Publication, Victoria University, Melbourne, AustraliaGoogle Scholar
  20. 20.
    Dekishima, Y., Lan, E. I., Shen, C. R., Cho, K. M., & Liao, J. C. (2011). Journal of the American Chemical Society, 133, 11399–11401.CrossRefGoogle Scholar
  21. 21.
    Machado, H. B., Dekishima, Y., Luo, H., Lan, E. I., & Liao, J. C. (2012). Metabolic Engineering, 14, 504–511.CrossRefGoogle Scholar
  22. 22.
    Hino, T., Miyazaki, K., & Kuroda, S. (1991). Journal of General and Applied Microbiology, 37, 121–129.CrossRefGoogle Scholar
  23. 23.
    Russell, J. B. (1992). Journal of Applied Bacteriology, 73, 363–370.CrossRefGoogle Scholar
  24. 24.
    Wasewar, K. L., & Shende, D. Z. (2011). Journal of Chemical & Engineering Data, 56, 288–297.CrossRefGoogle Scholar
  25. 25.
    Roddick, F. A., & Britz, M. L. (1997). Journal of Chemical Technology and Biotechnology, 69, 383–391.CrossRefGoogle Scholar
  26. 26.
    Helsel, R. W. (1977). Chemical Engineering Progress, 73, 55–59.Google Scholar
  27. 27.
    Kertes, A. S., & King, C. J. (1986). Biotechnology and Bioengineering, 28, 269–282.CrossRefGoogle Scholar
  28. 28.
    Wu, Z., & Yang, S. T. (2003). Biotechnology and Bioengineering, 82, 93–102.CrossRefGoogle Scholar
  29. 29.
    Zigova, J., Sturdik, E., Vandak, D., & Schlosser, S. (1999). Process Biochemistry, 34, 835–843.CrossRefGoogle Scholar
  30. 30.
    Weimer, P. J., & Stevenson, D. M. (2012). Applied Microbiology and Biotechnology, 94, 461–466.CrossRefGoogle Scholar
  31. 31.
    Jeon, B. S., Um, Y. S., Lee, S. M., Lee, S. Y., Kim, H. J., Kim, Y. H., et al. (2008). Energy & Fuels, 22, 83–86.CrossRefGoogle Scholar
  32. 32.
    Paredes, C. J., Alsaker, K. V., & Papoutsakis, E. T. (2005). Nature Reviews Microbiology, 3, 969–978.Google Scholar
  33. 33.
    Yang, S. T., White, S. A., & Hsu, S. T. (1991). Industrial and Engineering Chemistry Research, 30, 1335–1342.CrossRefGoogle Scholar
  34. 34.
    Romero, C. M., & Suárez, F. (2009). Journal of Solution Chemistry, 38, 315–320.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Clean Energy Research Center, Korea Institute and Science and TechnologySeoulRepublic of Korea
  2. 2.Department of Chemical and Biological EngineeringKorea UniversitySeoulRepublic of Korea
  3. 3.Department of Chemical EngineeringHanyang UniversitySeoulRepublic of Korea
  4. 4.Energy Materials and Process, BK 21Hanyang UniversitySeoulRepublic of Korea
  5. 5.Department of Fuel Cells and Hydrogen TechnologyHanyang UniversitySeoulRepublic of Korea

Personalised recommendations