Applied Biochemistry and Biotechnology

, Volume 170, Issue 7, pp 1560–1573 | Cite as

Synthesis of Aliphatic Esters of Cinnamic Acid as Potential Lipophilic Antioxidants Catalyzed by Lipase B from Candida antarctica

  • Sonja M. Jakovetić
  • Branimir Z. Jugović
  • Milica M. Gvozdenović
  • Dejan I. Bezbradica
  • Mirjana G. Antov
  • Dušan Ž. Mijin
  • Zorica D. Knežević-Jugović


Immobilized lipase from Candida antarctica (Novozyme 435) was tested for the synthesis of various phenolic acid esters (ethyl and n-butyl cinnamate, ethyl p-coumarate and n-butyl p-methoxycinnamate). The second-order kinetic model was used to mathematically describe the reaction kinetics and to compare present processes quantitatively. It was found that the model agreed well with the experimental data. Further, the effect of alcohol type on the esterification of cinnamic acid was investigated. The immobilized lipase showed more ability to catalyze the synthesis of butyl cinnamate. Therefore, the process was optimized for the synthesis of butyl cinnamate as a function of solvent polarity (logP) and amount of biocatalyst. The highest ester yield of 60.7 % was obtained for the highest enzyme concentration tested (3 % w/w), but the productivity was for 34 % lower than the corresponding value obtained for the enzyme concentration of 1 % (w/w). The synthesized esters were purified, identified, and screened for antioxidant activities. Both DPPH assay and cyclic voltammetry measurement have shown that cinnamic acid esters have better antioxidant properties than cinnamic acid itself.


Phenolic acid esters Enzymatic esterification Lipase B Kinetics Radical-scavenging activity Antioxidant activity Cyclic voltammetry 



This work was supported by grant numbers E!6750 and III 46010 from the Ministry of Education, Science and Technological Development, Republic of Serbia.


  1. 1.
    Pratt, D. E., & Hudson, B. J. F. (1990). In B. J. F. Hudson (Ed.), Food antioxidants (pp. 171–192). London: Elsevier Science.CrossRefGoogle Scholar
  2. 2.
    Larson, R. A. (1988). Phytochemistry, 27, 969–978.CrossRefGoogle Scholar
  3. 3.
    Stamatis, H., Sereti, V., & Kolisis, F. N. (1999). Journal of the American Oil Chemists’ Society, 76, 1505–1510.CrossRefGoogle Scholar
  4. 4.
    Shaath, N. A. (1997). In N. J. Lowe, N. A. Shaath, & M. A. Pathak (Eds.), Sunscreens: development, evaluation, and regulatory aspects (2nd ed., pp. 3–33). New York: Marcel Dekker, Inc.Google Scholar
  5. 5.
    Compton, D. L., Laszlo, J. A., & Berhow, M. A. (2000). Journal of the American Oil Chemists’ Society, 77, 513–519.CrossRefGoogle Scholar
  6. 6.
    Patil, D., Dev, B., & Nag, A. (2011). Journal of Molecular Catalysis B: Enzymatic, 73, 5–8.CrossRefGoogle Scholar
  7. 7.
    Sabally, K., Karboune, S., Yeboah, F., & Kermasha, S. (2005). Applied Biochemistry and Biotechnology, 127, 17–27.CrossRefGoogle Scholar
  8. 8.
    Feddern, V., Yang, Z., Xu, X., Badiale-Furlong, E., & de Souza-Soares, L. A. (2011). Industrial and Engineering Chemistry Research, 50, 7183–7190.CrossRefGoogle Scholar
  9. 9.
    Singh, A., & Mukhopadhyay, M. (2012). Applied Biochemistry and Biotechnology, 166, 486–520.CrossRefGoogle Scholar
  10. 10.
    Kapoor, M., & Gupta, M. N. (2012). Process Biochemistry, 47, 555–569.CrossRefGoogle Scholar
  11. 11.
    Yadav, G. D., & Lathi, P. S. (2004). Journal of Molecular Catalysis B: Enzymatic, 27, 109–115.CrossRefGoogle Scholar
  12. 12.
    Li, W.-N., Chen, B.-Q., & Tan, T.-W. (2011). Applied Biochemistry and Biotechnology, 163, 102–111.CrossRefGoogle Scholar
  13. 13.
    Milašinović N, Knežević-Jugović Z, Jakovljević Ž, Filipović J, Kalagasidis Krušić M (2012) Chem Eng J 181–182, 614–623Google Scholar
  14. 14.
    Bezbradica, D., Mijin, D., Šiler-Marinković, S., & Knežević, Z. (2007). Journal of Molecular Catalysis B: Enzymatic, 45, 97–101.CrossRefGoogle Scholar
  15. 15.
    Martins, A. B., Graebin, N. G., Lorenzoni, A. S. G., Fernandez-Lafuente, R., Ayub, M. A. Z., & Rodrigues, R. C. (2011). Process Biochemistry, 46, 2311–2316.CrossRefGoogle Scholar
  16. 16.
    Guyot, B., Bosquette, B., Pina, M., & Graille, J. (1997). Biotechnology Letters, 19, 529–532.CrossRefGoogle Scholar
  17. 17.
    Yang, Z., Guo, Z., & Xu, X. (2012). Food Chemistry, 132, 1311–1315.CrossRefGoogle Scholar
  18. 18.
    Lee, G.-S., Widjaja, A., & Ju, Y.-H. (2006). Biotechnology Letters, 28, 581–585.CrossRefGoogle Scholar
  19. 19.
    Katsoura, M. H., Polydera, A. C., Tsironis, L. D., Petraki, M. P., Rajačić, S. K., Tselepis, A. D., et al. (2009). New Biotechnology, 26, 83–91.CrossRefGoogle Scholar
  20. 20.
    Belsito, D., Bickers, D., Bruze, M., Calow, P., Greim, H., Hanifin, J. M., et al. (2007). Food and Chemical Toxicology, 45, S1–S23.CrossRefGoogle Scholar
  21. 21.
    Borneman, W. S., Hartley, R. D., Morrison, W. H., Akin, D. E., & Ljungdahl, L. G. (1990). Applied Microbiology and Biotechnology, 33, 345–351.CrossRefGoogle Scholar
  22. 22.
    Blois, M. S. (1958). Nature, 181, 1199–1200.CrossRefGoogle Scholar
  23. 23.
    Gorjanović, S. Z., Novaković, M. M., Potkonjak, N. I., & Sužnjević, D. Z. (2010). Journal of Agricultural and Food Chemistry, 58, 4626–4631.CrossRefGoogle Scholar
  24. 24.
    Basso, A., Braiuca, P., Cantone, S., Ebert, C., Linda, P., Spizzo, P., et al. (2007). Advanced Synthesis and Catalysis, 349, 877–886.CrossRefGoogle Scholar
  25. 25.
    Uppenberg, J., Hansen, M. T., Patkar, S., & Jones, T. A. (1994). Structure, 2, 293–308.CrossRefGoogle Scholar
  26. 26.
    Magnusson A (2005) Ph. D. Thesis, Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  27. 27.
    Buisman, G. J. H., van Helteren, C. T. W., Kramer, G. F. H., Veldsink, J. W., Derksen, J. T. P., & Cuperus, F. P. (1998). Biotechnology Letters, 20, 131–136.CrossRefGoogle Scholar
  28. 28.
    Laane, C., Boeren, S., Vos, K., & Veeger, C. (1987). Biotechnology and Bioengineering, 30, 81–87.CrossRefGoogle Scholar
  29. 29.
    Fu, B., & Vasudevan, P. T. (2010). Energy & Fuels, 24, 4646–4651.CrossRefGoogle Scholar
  30. 30.
    Jung, H., Kang, S., Hyun, S., & Choi, J. (2005). Archives of Pharmacal Research, 28, 534–540.CrossRefGoogle Scholar
  31. 31.
    Garrido, J., Gaspar, A., Garrido, E. M., Miri, R., Tavakkoli, M., Pourali, S., et al. (2011). Biochimie, 94, 961–967.CrossRefGoogle Scholar
  32. 32.
    Menezes, J. C. J. M. D. S., Kamat, S. P., Cavaleiro, J. A. S., Gaspar, A., Garrido, J., & Borges, F. (2011). European Journal of Medicinal Chemistry, 46, 773–777.CrossRefGoogle Scholar
  33. 33.
    Kikuzaki, H., Hisamoto, M., Hirose, K., Akiyama, K., & Taniguchi, H. (2002). Journal of Agricultural and Food Chemistry, 50, 2161–2168.CrossRefGoogle Scholar
  34. 34.
    Simić, A., Manojlović, D., Šegan, D., & Todorović, M. (2007). Molecules, 12, 2327–2340.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sonja M. Jakovetić
    • 1
  • Branimir Z. Jugović
    • 2
  • Milica M. Gvozdenović
    • 1
  • Dejan I. Bezbradica
    • 1
  • Mirjana G. Antov
    • 3
  • Dušan Ž. Mijin
    • 1
  • Zorica D. Knežević-Jugović
    • 1
    • 4
  1. 1.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute of Technical ScienceSerbian Academy of Science and ArtsBelgradeSerbia
  3. 3.Faculty of TechnologyUniversity of Novi SadNovi SadSerbia
  4. 4.Department of Biochemical Engineering and Biotechnology, Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations