Applied Biochemistry and Biotechnology

, Volume 171, Issue 3, pp 569–582 | Cite as

Application of Yeast Candida utilis to Ferment Eisenia bicyclis for Enhanced Antibacterial Effect

  • Sung-Hwan Eom
  • Dae-Sung Lee
  • Young Mi Kang
  • Kwang-Tae Son
  • You-Jin Jeon
  • Young-Mog Kim


In this study, fermentation broth of Eisenia bicyclis with Candia utilis YM-1 exhibited enhanced antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) and food-borne pathogenic bacteria. To perform a more detailed investigation on the antibacterial activity, the fermented broth of E. bicyclis was extracted with methanol and further fractionated with organic solvents. After 1-day fermentation, the ethyl acetate (EtOAc)-soluble extract exhibited the highest anti-MRSA activity with minimum inhibitory concentration values ranging from 128 to 512 μg/mL, suggesting that the fermentation of E. bicyclis with C. utilis YM-1 may enhance antibacterial activity against MRSA. This effect was correlated to the result obtained by an increase in total phenolic contents in EtOAc-soluble extract. In addition, high-performance liquid chromatography analysis revealed that eckol, dieckol, dioxinodehydroeckol, and phlorofucofuroeckol-A contents in the EtOAc-soluble extract increased significantly. Thus, these results show that anti-MRSA activity of E. bicyclis fermented with C. utilis most likely originated from phlorotannins and allow the possible application of a variety of seaweed functional foods.


Antimicrobial activity Eisenia bicyclis Fermentation MRSA MIC HPLC 



This work was financially supported by the National Fisheries Research and Development Institute (RP-2013-FS-006). Also, this research was supported by the special fund of Pukyong National University donated by the SKS Trading Co. in Lynnwood, WA, USA in memory of the late Mr. Young Hwan Kang, who had a deep concern for and inspiration in fishery science.


  1. 1.
    Aarestrup, F. M., Kruse, H., Tast, E., Hammerum, A. M., & Jensen, L. B. (2000). Associations between the use of antimicrobial agents for growth promotion and the occurrence of resistance among Enterococcus faecium from broilers and pigs in Denmark, Finland, and Norway. Microbial Drug Resistance, 6, 63–70.CrossRefGoogle Scholar
  2. 2.
    Carlet, J., Jarlier, V., Harbarth, S., Voss, A., Goossens, H., & Pittet, D. (2012). Ready for a world without antibiotics? The Pensières Antibiotic Resistance Call to Action. Antimicrobial Resistance and Infection Control, 1, 1–13.CrossRefGoogle Scholar
  3. 3.
    Franco, B. E., Martínez, M. A., Rodríguez, M. A. S., & Wertheimer, A. I. (2009). The determinants of the antibiotic resistance process. Infection and Drug Resistance, 2, 1–11.Google Scholar
  4. 4.
    Gardam, M. A. (2000). Is methicillin-resistant Staphylococcus aureus an emerging community pathogen? A review of the literature. Canadian Journal of Infectious Diseases, 11, 202–211.Google Scholar
  5. 5.
    Bush, L. M. (2011). Best alternative to vancomycin for serious methicillin-resistant Staphylococcus aureus infections: let’s just say it. Clinical Infectious Diseases, 53, 965–966.CrossRefGoogle Scholar
  6. 6.
    Hughes, D. (2003). Exploiting genomics, genetics and chemistry to combat antibiotic resistance. Nature Reviews Genetics, 4, 432–441.CrossRefGoogle Scholar
  7. 7.
    Peters, N. K., Dixon, D. M., Holland, S. M., & Fauci, A. S. (2008). The research agenda of the National Institute of Allergy and Infectious Diseases for antimicrobial resistance. Journal of Infectious Diseases, 197, 1087–1093.CrossRefGoogle Scholar
  8. 8.
    Paterson, I., Naylor, G. J., Gardner, N. M., Guzmán, E., & Wright, A. E. (2010). Total synthesis and biological evaluation of a series of macrocyclic hybrids and analogues of the antimitotic natural products dictyostatin, discodermolide, and taxol. Chemistry, an Asian Journal, 6, 459–473.CrossRefGoogle Scholar
  9. 9.
    Eom, S. H., Kim, Y. M., & Kim, S. K. (2012). Antimicrobial effect of phlorotannins from marine brown algae. Food and Chemical Toxicology, 50, 3251–3255.CrossRefGoogle Scholar
  10. 10.
    Sinha, R. P., Klisch, M., Gröniger, A., & Häder, D. P. (2001). Responses of algae and cyanobacteria to solar UV-B. Plant Ecology, 154, 189–204.CrossRefGoogle Scholar
  11. 11.
    Eom, S. H., Park, J. H., Yu, D. U., Choi, J. I., Choi, J. D., Lee, M. S., et al. (2011). Antimicrobial activity of brown alga Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Fisheries and Aquatic Sciences, 14, 251–256.CrossRefGoogle Scholar
  12. 12.
    Lee, D. S., Kang, M. S., Hwang, H. J., Eom, S. H., Yang, J. Y., Lee, M. S., et al. (2008). Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnology and Bioprocess Engineering, 13, 765–771.CrossRefGoogle Scholar
  13. 13.
    Carte, B. K. (1996). Biomedical potential of marine natural products. Bioscience, 46, 271–286.CrossRefGoogle Scholar
  14. 14.
    Hay, M. E., Duffy, J. E., Pfister, C. A., & Fenical, W. (1987). Chemical defenses against different marine herbivores: are amphipods insect equivalents? Ecology, 68, 1567–1580.CrossRefGoogle Scholar
  15. 15.
    Penesyan, A., Kjelleberg, S., & Egan, S. (2010). Development of novel drugs from marine surface associated microorganisms. Marine Drugs, 8, 438–459.CrossRefGoogle Scholar
  16. 16.
    Qian, Z. J., Kang, K. H., Ryu, B., Je, J. Y., Heo, S. J., Oh, C., et al. (2012). In vitro antioxidant activities of the fermented marine microalga Pavlova lutheri (Haptophyta) with the yeast Hansenula polymorpha. Journal of Phycology, 48, 475–482.CrossRefGoogle Scholar
  17. 17.
    Gullo, M., & Giudici, P. (2008). Acetic acid bacteria in traditional balsamic vinegar: phenotypic traits relevant for starter cultures selection. International Journal of Food Microbiology, 125, 46–53.CrossRefGoogle Scholar
  18. 18.
    Vasiljevic, T., & Shah, N. P. (2008). Probiotics—from Metchnikoff to bioactives. International Dairy Journal, 18, 714–728.CrossRefGoogle Scholar
  19. 19.
    Eom, S. H., Kang, Y. M., Park, J. H., Yu, D. U., Jeong, E. T., Lee, M. S., et al. (2011). Enhancement of polyphenol content and antioxidant activity of Eisenia bicyclis extract by microbial fermentation. Fisheries and Aquatic Sciences, 14, 192–197.CrossRefGoogle Scholar
  20. 20.
    Clinical and Laboratory Standards Institute (2009). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard—eighth edition. CLSI Document M7-A8. Wayne, PA, USAGoogle Scholar
  21. 21.
    Clinical and Laboratory Standards Institute (2006). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard—seventh edition. CLSI Document M7-A7. Wayne, PA, USA.Google Scholar
  22. 22.
    Kim, M. M., Ta, Q. V., Mendis, E., Rajapakse, N., Jung, W. K., Byun, H. G., et al. (2006). Phlorotannins in Ecklonia cava extract inhibit matrix metalloproteinase activity. Life Sciences, 79, 1436–1443.CrossRefGoogle Scholar
  23. 23.
    Lee, S. H., Karadeniz, F., Kim, M. M., & Kim, S. K. (2009). α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. Journal of the Science of Food and Agriculture, 89, 1552–1558.CrossRefGoogle Scholar
  24. 24.
    Wijesinghe, W. A. J. P., Ko, S. C., & Jeon, Y. J. (2011). Effect of phlorotannins isolated from Ecklonia cava on angiotensin I-converting enzyme (ACE) inhibitory activity. Nutrition Research and Practice, 5, 93–100.CrossRefGoogle Scholar
  25. 25.
    Eom, S. H., & Kim, Y. M. (2008). Antibacterial activity of the phaeophyta Ecklonia stolonifera on methicillin-resistant Staphylococcus aureus. Fisheries and Aquatic Sciences, 11, 1–6.CrossRefGoogle Scholar
  26. 26.
    Roush, A. H., Questiaux, L. M., & Domnas, A. J. (2005). The active transport and metabolism of purines in the yeast, Candida utilis. Journal of Cellular and Comparative Physiology, 54, 275–286.CrossRefGoogle Scholar
  27. 27.
    Hwang, H. J. (2009). Anti-MRSA (methicillin-resistant Staphylococcus aureus) activity of Aspergillus oryzae fermentation extract of Ecklonia cava residue. MSc dissertation, Food Science & Technology, Pukyong National University, Busan, Republic of Korea.Google Scholar
  28. 28.
    Kim, J. A., Formoso, G., Li, Y., Potenza, M. A., Marasciulo, F. L., Montagnani, M., et al. (2007). Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. Journal of Biological Chemistry, 282, 13736–13745.CrossRefGoogle Scholar
  29. 29.
    Lin, C., Yu, S. G., Guo, D. S., WEI, Y. X., & AI, G. H. (2006). The antibacterial activity of phlorotannins from Sargassum thunbergii Kuntzze. Marine Sciences, 30, 94–97.Google Scholar
  30. 30.
    Jung, H. A., Hyun, S. K., Kim, H. R., & Choi, J. S. (2006). Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fisheries Science, 72, 1292–1299.CrossRefGoogle Scholar
  31. 31.
    McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., Blake, A., & Stewart, D. (2005). Different polyphenolic components of soft fruits inhibit α-amylase and α-glucosidase. Journal of Agricultural and Food Chemistry, 53, 2760–2766.CrossRefGoogle Scholar
  32. 32.
    Yoon, N. Y., Kim, H. R., Chung, H. Y., & Choi, J. S. (2008). Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Archives of Pharmacal Research, 31, 1564–1571.CrossRefGoogle Scholar
  33. 33.
    Kim, J. H., Lee, D. S., Lim, C. W., Park, H. Y., & Park, J. H. (2002). Antibacterial activity of sea-mustard, Laminaria japonica extracts on the cariogenic bacteria, Streptococcus mutans. Journal of the Korean Fisheries Society, 35, 191–195.Google Scholar
  34. 34.
    Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., & Nakamura, T. (2002). Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. Journal of Antimicrobial Chemotherapy, 50, 889–893.CrossRefGoogle Scholar
  35. 35.
    Achinewhu, S. C., Barber, L. I., & Ijeoma, I. O. (1998). Physicochemical properties and garification (gari yield) of selected cassava cultivars in Rivers State, Nigeria. Plant Foods for Human Nutrition, 52, 133–140.CrossRefGoogle Scholar
  36. 36.
    Adewusi, S. R. A., Ojumu, T. V., & Falade, O. S. (1999). The effect of processing on total organic acids content and mineral availability of simulated cassava–vegetable diets. Plant Foods for Human Nutrition, 53, 367–380.CrossRefGoogle Scholar
  37. 37.
    Chang F. H. (1985). Effects of some environmental factors on growth characteristics of Candida utilis on peat hydrolysates. Applied and Environmental Microbiology, 49, 4–60.Google Scholar
  38. 38.
    Boze H., Moulin G., & Galzy P. (1992). Production of food and fodder yeasts. Critical Reviews in Biotechnology, 12, 65–86.Google Scholar
  39. 39.
    Ichi T., Takenaka S., Konno H., Ishida T., Sato H., Suzuki A., et al. (1993). Development of a new commercial-scale airlift fermentor for rapid growth of yeast. Journal of Fermentation and Bioengineering, 75, 375–379.Google Scholar
  40. 40.
    Ghribi D., Zouari N., Trigui W., & Jaoua S. (2007). Use of sea water as salts source in starch- and soya bean-based media, for the production of Bacillus thuringiensis bioinsecticides. Process Biochemistry, 42, 374–378.Google Scholar
  41. 41.
    Liu C. H., Chen X., Liu T. T., Lian B., Gu Y., Caer V., et al. (2007). Study of the antifungal activity of Acinetobacter baumannii LCH001 in vitro and identification of its antifungal components. Applied Microbiology and Biotechnology, 76, 459–466Google Scholar
  42. 42.
    Barna, J. C. J., & Williams, D. H. (1984). The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Annual Review of Microbiology, 38, 339–357.CrossRefGoogle Scholar
  43. 43.
    Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162, 491–498.CrossRefGoogle Scholar
  44. 44.
    Yoon, N. Y., Eom, T. K., Kim, M. M., & Kim, S. K. (2009). Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. Journal of Agricultural and Food Chemistry, 57, 4124–4129.CrossRefGoogle Scholar
  45. 45.
    Kang, S. M., Heo, S. J., Kim, K. N., Lee, S. H., Yang, H. M., Kim, A. D., et al. (2011). Molecular docking studies of a phlorotannin, dieckol isolated from Ecklonia cava with tyrosinase inhibitory activity. Bioorganic & Medicinal Chemistry, 20, 311–336.CrossRefGoogle Scholar
  46. 46.
    Shobharani, P., Halami, P. M., & Sachindra, N. M. (2013). Potential of marine lactic acid bacteria to ferment Sargassum sp. for enhanced anticoagulant and antioxidant properties. Journal of Applied Microbiology, 114, 96–107.Google Scholar
  47. 47.
    Vijayabaskar, P., & Shiyamala, V. (2012). Antioxidant properties of seaweed polyphenol from Turbinaria ornate (Turner) J. Agardh, 1848. Asian Pacific Journal of Tropical Biomedicine, 2, S95–S98.Google Scholar
  48. 48.
    Jimenez-Escrig, A., Jimenez, I. J., Pulido, R., & Calixto, F. S. (2001). Antioxidant activity of fresh and processed edible seaweeds. Journal of the Science of Food and Agriculture, 81, 530–534.CrossRefGoogle Scholar
  49. 49.
    Eom S. H., Kim D. H., Lee S. H., Yoon N. Y., Kim J. H., Kim T. H., et al. (2012). In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin‐resistant Staphylococcus aureus. Phytotherapy Research, In press.Google Scholar
  50. 50.
    Stapleton P. D., Shah S., Anderson J. C., Hara Y., Hamilton-Miller J. M.T., & Taylor P.W. (2004). Modulation of β-lactam resistance in Staphylococcus aureus by catechins and gallates. International Journal of Antimicrobial Agents, 23, 462–467.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sung-Hwan Eom
    • 1
  • Dae-Sung Lee
    • 2
  • Young Mi Kang
    • 3
  • Kwang-Tae Son
    • 4
  • You-Jin Jeon
    • 5
  • Young-Mog Kim
    • 1
  1. 1.Department of Food Science and TechnologyPukyong National UniversityBusanRepublic of Korea
  2. 2.POSTECH Ocean Science and Technology InstitutePOSTECHPohangRepublic of Korea
  3. 3.Marinebioprocess Co., LtdBusanRepublic of Korea
  4. 4.Food Safety Research DivisionNational Fisheries Research and Development InstituteBusanRepublic of Korea
  5. 5.Department of Marine Life SciencesJeju National UniversityJejuRepublic of Korea

Personalised recommendations