Applied Biochemistry and Biotechnology

, Volume 170, Issue 5, pp 1080–1093 | Cite as

Production of Microbial Rhamnolipid by Pseudomonas Aeruginosa MM1011 for Ex Situ Enhanced Oil Recovery

  • Hossein AmaniEmail author
  • Markus Michael Müller
  • Christoph Syldatk
  • Rudolf Hausmann


Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g−1, respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a biosurfactant of choice for actual MEOR applications.


Biosurfactants Emulsion index Enhanced oil recovery Pseudomonas aeruginosa Rhamnolipid 



We thank Sandra Baumann, Barbara Hörmann, Michaela Kugel, Markus Andre, and Mareike Perzborn for their experimental help.


  1. 1.
    Banat, I. M. (1995). Bioresource Technology, 51, 1–12.CrossRefGoogle Scholar
  2. 2.
    Amani, H., Mehrnia, M. R., Haghighi, M., Sarrafzadeh, M. H., & Soudi, M. R. (2010). Applied Biochemistry and Biotechnology, 162, 510–523.CrossRefGoogle Scholar
  3. 3.
    Yeh, M. S., Wei, Y. H., & Chang, J. S. (2006). Process Biochemistry, 41, 1799–1805.CrossRefGoogle Scholar
  4. 4.
    Fang, X., Wang, Q., Bai, B., Liu, X. C., Tang, Y., Shulder, P. J., et al. (2007). Engineering rhamnolipid biosurfactants as agents for microbial enhanced oil recovery. SPE No: 106048.Google Scholar
  5. 5.
    Amani, H., Sarrafzadeh, M. H., Haghighi, M., & Mehrnia, M. R. (2010). Petroleum Science and Engineering, 75, 209–214.CrossRefGoogle Scholar
  6. 6.
    Desai, J. D., & Banat, I. M. (1997). Microbiology and Molecular Biology, 61, 47–64.Google Scholar
  7. 7.
    Banat, I. M., Makkar, R. S., & Cameortra, S. S. (2005). Applied Microbiology and Biotechnology, 53, 495–508.CrossRefGoogle Scholar
  8. 8.
    Joshi, S., Bharucha, C., Jha, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2008). Bioresource Technology, 99, 195–199.CrossRefGoogle Scholar
  9. 9.
    Abouseoud, M., Maachi, R., & Amrane, A. (2007). Communicating Current Research and Educational Topics and Trends in Applied Microbiology, 340, 340–347. A. Méndez-Vilas (Ed.).Google Scholar
  10. 10.
    Kim, H. S., Yoon, B. D., Lee, C. H., Suh, H. H., Oh, H. M., & Katsuragy, T. (1997). Fermentation and Bioengineering, 84, 41–46.CrossRefGoogle Scholar
  11. 11.
    Wei, Y. H., & Chu, I. M. (1998). Enzyme and Microbial Technology, 22, 724–728.CrossRefGoogle Scholar
  12. 12.
    Davis, D. A., Lynch, H. C., & Varley, J. (1999). Enzyme and Microbial Technology, 25, 322–329.CrossRefGoogle Scholar
  13. 13.
    Makkar, R. S., & Cameotra, S. C. (1999). Surfactants and Detergents, 2(2), 237–241.CrossRefGoogle Scholar
  14. 14.
    Maier, R. M., & Soberon-Chavez, G. (2000). Applied Microbiology and Biotechnology, 54, 625–633.CrossRefGoogle Scholar
  15. 15.
    Abalos, A., Pinaso, A., Infante, M. R., Casals, M., Garcia, F., & Maneresa, A. (2001). Langmuir, 17, 1367–1371.CrossRefGoogle Scholar
  16. 16.
    Vater, J., Kablitz, B., Wilde, C., Franke, P., Mehta, N., & Cameotra, S. S. (2002). Microbiology, 68, 6210–6219.Google Scholar
  17. 17.
    Wei, Y. H., Wang, L. F., & Chang, J. S. (2004). Biotechnology Progress, 20, 979–983.CrossRefGoogle Scholar
  18. 18.
    Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M., & McInerney, M. J. (2004). Microbiological Methods, 56, 339–347.CrossRefGoogle Scholar
  19. 19.
    Chen, C. Y., Baker, S. C., & Darton, R. C. (2006). Chemical Technology & Biotechnology, 81, 1923–1931.CrossRefGoogle Scholar
  20. 20.
    Kim, H. S., Yoon, B. D., Choung, D. H., Oh, H. M., Katsuragi, T., & Tani, Y. (1999). Applied Microbiology and Biotechnology, 52, 713–721.CrossRefGoogle Scholar
  21. 21.
    Demin, W., Jiecheng, C., Qun, L., Lizhong, L., Changjiu, Z., & Jichun, H. (1999). An alkaline biosurfactant polymer flooding pilots in daqing oil field. SPE No:57304.Google Scholar
  22. 22.
    Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Engineering Geology, 60, 371–380.CrossRefGoogle Scholar
  23. 23.
    Daoshan, L., Shouliang, L., Yi, L., & Demin, W. (2004). Colloids and Surfaces A: Physicochemical and Engineering Aspects, 244, 53–60.CrossRefGoogle Scholar
  24. 24.
    Ramirez, W.F. (1987). Application of optimal control theory to enhanced oil recovery. First edition. Amsterdam, Netherlands: Elsevier.Google Scholar
  25. 25.
    Bubela, B. (1987). Surfactant Science Series, 25, 143–161.Google Scholar
  26. 26.
    Sen, R. (2008). Progress in Energy and Combustion Science, 34(6), 714–724.CrossRefGoogle Scholar
  27. 27.
    Faroug Ali, S. M., and Thomas, S. (1994). Scientia Iranica, 1, No. 3Google Scholar
  28. 28.
    Thomas, S. (2008). Oil Gas Science and Technology, 63, 9–19.CrossRefGoogle Scholar
  29. 29.
    Wang, Q. H., Fang, X. D., Bai, B. J., Liang, X. L., Shuler, P. J., Goddard, W. A., et al. (2007). Biotechnology and Bioengineering, 98, 842–853.CrossRefGoogle Scholar
  30. 30.
    Müller, M. M., Hörmann, B., Syldatk, C., & Hausmann, R. (2010). Applied Microbiology and Biotechnology, 87, 167–174.CrossRefGoogle Scholar
  31. 31.
    Hörmann, B., Müller, M. M., Syldatk, C., & Hausmann, R. (2010). European Journal of Lipid Science and Technology, 112, 674–680.CrossRefGoogle Scholar
  32. 32.
    Syldatk, C., Lang, S., Wagner, F., Wray, V., & Witte, L. (1985). Zeitschrift für Naturforschung. Section C, 40, 51–60.Google Scholar
  33. 33.
    Singh, A., Hamme, J. D., & Ward, O. P. (2007). Biotechnology Advances, 25, 99–121.CrossRefGoogle Scholar
  34. 34.
    Zekri, A. Y., Almehaideb, R. A., & Chaalal, O. (1999). Project of increasing oil recovery from UAE reservoir using bacteria flooding, an experimental approach. SPE No:56827.Google Scholar
  35. 35.
    Jinfeng, L., Lijun, M., Bozhong, M., Rulin, L., Fangtian, N., & Jiaxi, Z. (2005). Petroleum Science and Engineering, 48, 265–271.CrossRefGoogle Scholar
  36. 36.
    Soudmand-asali, A., Ayatollahi, S., Mohabatkar, H., Zareie, M., & Shariatpanahi, F. (2007). Petroleum Science and Engineering, 58, 161–172.CrossRefGoogle Scholar
  37. 37.
    Schenk, T., Schuphan, I., & Schmidt, B. (1995). Chromatography, 693, 7–13.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Hossein Amani
    • 1
    Email author
  • Markus Michael Müller
    • 2
  • Christoph Syldatk
    • 2
  • Rudolf Hausmann
    • 2
  1. 1.Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran
  2. 2.Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations