Applied Biochemistry and Biotechnology

, Volume 171, Issue 5, pp 1240–1252 | Cite as

Antioxidant Properties of Bio-active Substances from Shrimp Head Fermented by Bacillus licheniformis OPL-007

  • Xiangzhao MaoEmail author
  • Pei Liu
  • Shuai He
  • Jieling Xie
  • Feifei Kan
  • Chunyu Yu
  • Zhaojie LiEmail author
  • Changhu Xue
  • Hong Lin


Antioxidative activities were found in the culture supernatant of Bacillus licheniformis OPL-007 using shrimp head waste (SHW) as the sole carbon and nitrogen source. After optimizing fermentation conditions, some bio-active substances were determined from the broth. The contents of total phenols, polysaccharides, reducing sugars, free amino acids, and organic acids were 888.80, 402.74, 85.88, 2,061.79, and 5,426.74 mg/l, respectively. Moreover, the fermentation liquid was found rich in eight essential amino acids and non-protein amino acids. The antioxidant activity of the culture supernatant, in terms of the scavenging activity of DPPH radicals, reducing power, and metal chelating ability, was monitored, and the fermentation liquid showed a strong antioxidant capacity. The results indicate that bio-deproteinization of SHW by B. licheniformis OPL-007 can increase its antioxidant activity, and SHW has the potential application in the production of functional foods.


Bacillus licheniformis Shrimp head waste Fermentation Bio-active substances Antioxidant property Functional foods 



This work was supported by the National High Technology Research and Development Program of China (No. 2011AA100803), China Postdoctoral Science Foundation (No. 2012M511550), Fundamental Research Funds for the Central Universities (No. 201262021), Shandong Postdoctoral Science Foundation (No. 201103015), National Science and Technology Support Program (No. 2012BAD28B05), and Program for Chang Jiang Scholars and Innovative Research Team in University. The authors are grateful to Wei Dong who is in the Department of Biology and Chemistry, City University of Hong Kong, for the critical reading of the manuscript and many valuable comments.


  1. 1.
    Ghorbel-Bellaaj, O., Hmidet, N., Jellouli, K., Younes, I., Maalej, H., & Hachicha, R. (2011). Shrimp waste fermentation with Pseudomonas aeruginosa A2: Optimization of chitin extraction conditions through Plackett-Burman and response surface methodology approaches. International Journal of Biological Macromolecules, 48, 596–602.CrossRefGoogle Scholar
  2. 2.
    Kandra, P., Challa, M. M., & Kalangi Padma Jyothi, H. (2012). Efficient use of shrimp waste: present and future trends. Applied Microbiology and Biotechnology, 93, 17–29.CrossRefGoogle Scholar
  3. 3.
    Sachindra, N., Bhaskar, N., Siddegowda, G., Sathisha, A., & Suresh, P. (2007). Recovery of carotenoids from ensilaged shrimp waste. Bioresource Technology, 98, 1642–1646.CrossRefGoogle Scholar
  4. 4.
    Bueno-Solano, C., López-Cervantes, J., Campas-Baypoli, O., Lauterio-García, R., Adan-Bante, N., & Sánchez-Machado, D. (2009). Chemical and biological characteristics of protein hydrolysates from fermented shrimp by-products. Food Chemistry, 112, 671–675.CrossRefGoogle Scholar
  5. 5.
    Rødde, R. H., Einbu, A., & Vårum, K. M. (2008). A seasonal study of the chemical composition and chitin quality of shrimp shells obtained from northern shrimp (Pandalus borealis). Carbohydrate Polymers, 71, 388–393.CrossRefGoogle Scholar
  6. 6.
    Manni, L., Ghorbel-Bellaaj, O., Jellouli, K., Younes, I., & Nasri, M. (2010). Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Applied Biochemistry and Biotechnology, 162, 345–357.CrossRefGoogle Scholar
  7. 7.
    Quan, C., & Turner, C. (2009). Extraction of astaxanthin from shrimp waste using pressurized hot ethanol. Chromatographia, 70, 247–251.CrossRefGoogle Scholar
  8. 8.
    El-Hadj Ali, N., Hmidet, N., Ghorbel-Bellaaj, O., Fakhfakh-Zouari, N., Bougatef, A., & Nasri, M. (2011). Solvent-stable digestive alkaline proteinases from Striped Seabream (Lithognathus mormyrus) viscera: characteristics, application in the deproteinization of shrimp waste, and evaluation in laundry commercial detergents. Applied Biochemistry and Biotechnology, 164, 1096–1110.CrossRefGoogle Scholar
  9. 9.
    Bhaskar, N., Suresh, P., Sakhare, P., & Sachindra, N. (2007). Shrimp biowaste fermentation with Pediococcus acidolactici CFR2182: Optimization of fermentation conditions by response surface methodology and effect of optimized conditions on deproteination/demineralization and carotenoid recovery. Enzyme and Microbial Technology, 40, 1427–1434.CrossRefGoogle Scholar
  10. 10.
    Handayani, A. D., Indraswati, N., & Ismadji, S. (2008). Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: Studies of extraction kinetics and thermodynamic. Bioresource Technology, 99, 4414–4419.CrossRefGoogle Scholar
  11. 11.
    Oliveira Cavalheiro, J. M., Oliveira de Souza, E., & Bora, P. S. (2007). Utilization of shrimp industry waste in the formulation of tilapia (Oreochromis niloticus Linnaeus) feed. Bioresource Technology, 98, 602–606.CrossRefGoogle Scholar
  12. 12.
    Abdou, E. S., Nagy, K. S. A., & Elsabee, M. Z. (2008). Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology, 99, 1359–1367.CrossRefGoogle Scholar
  13. 13.
    Waldeck, J., Daum, G., Bisping, B., & Meinhardt, F. (2006). Isolation and molecular characterization of chitinase-deficient Bacillus licheniformis strains capable of deproteinization of shrimp shell waste to obtain highly viscous chitin. Applied and Environmental Microbiology, 72, 7879–7885.CrossRefGoogle Scholar
  14. 14.
    Xu, Y., Gallert, C., & Winter, J. (2008). Chitin purification from shrimp wastes by microbial deproteination and decalcification. Applied Microbiology and Biotechnology, 79, 687–697.CrossRefGoogle Scholar
  15. 15.
    Synowiecki, J., & Al-Khateeb, N. A. A. Q. (2000). The recovery of protein hydrolysate during enzymatic isolation of chitin from shrimp Crangon crangon processing discards. Food Chemistry, 68, 147–152.CrossRefGoogle Scholar
  16. 16.
    Rao, M., Munoz, J., & Stevens, W. (2000). Critical factors in chitin production by fermentation of shrimp biowaste. Applied Microbiology and Biotechnology, 54, 808–813.CrossRefGoogle Scholar
  17. 17.
    John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524–534.CrossRefGoogle Scholar
  18. 18.
    Chro, C. P. T. G. (1962). AC BRIEFS. Analytical Chemistry, 34, 882.CrossRefGoogle Scholar
  19. 19.
    Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows: methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 33, 213–217.CrossRefGoogle Scholar
  20. 20.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  21. 21.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  22. 22.
    Spackman, D. H., Stein, W. H., & Moore, S. (1958). Automatic recording apparatus for use in chromatography of amino acids. Analytical Chemistry, 30, 1190–1206.CrossRefGoogle Scholar
  23. 23.
    Holloway, W. D., Argall, M. E., Jealous, W. T., Lee, J. A., & Bradbury, J. H. (1989). Organic acids and calcium oxalate in tropical root crops. Journal of Agricultural and Food Chemistry, 37, 337–341.CrossRefGoogle Scholar
  24. 24.
    Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199–1200.CrossRefGoogle Scholar
  25. 25.
    Kuo, Y. H., Liang, T. W., Liu, K. C., Hsu, Y. W., Hsu, H. C., & Wang, S. L. (2011). Isolation and Identification of a Novel Antioxidant with Antitumour Activity from Serratia ureilytica Using Squid Pen as Fermentation Substrate. Marine Biotechnology, 13, 451–461.CrossRefGoogle Scholar
  26. 26.
    Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics, 315, 161–169.CrossRefGoogle Scholar
  27. 27.
    Jung, W., Jo, G., Kuk, J., Kim, Y., Oh, K., & Park, R. (2007). Production of chitin from red crab shell waste by successive fermentation with Lactobacillus paracasei KCTC-3074 and Serratia marcescens FS-3. Carbohydrate Polymers, 68, 746–750.CrossRefGoogle Scholar
  28. 28.
    Ghorbel-Bellaaj, O., Younes, I., Maâlej, H., Hajji, S., & Nasri, M. (2012). Chitin extraction from shrimp shell waste using Bacillus bacteria. International Journal of Biological Macromolecules, 51, 1196–1201.CrossRefGoogle Scholar
  29. 29.
    Hoffmann, K., Daum, G., Köster, M., Kulicke, W.-M., Meyer-Rammes, H., Bisping, B., & Meinhardt, F. (2010). Genetic improvement of Bacillus licheniformis strains for efficient deproteinization of shrimp shells and production of high-molecular-mass chitin and chitosan. Applied and Environmental Microbiology, 76, 8211–8221.CrossRefGoogle Scholar
  30. 30.
    Seymour, T. A., Li, S. J., & Morrissey, M. T. (1996). Characterization of a natural antioxidant from shrimp shell waste. Journal of Agricultural and Food Chemistry, 44, 682–685.CrossRefGoogle Scholar
  31. 31.
    Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66, 401–436.CrossRefGoogle Scholar
  32. 32.
    Que, F., Mao, L., Zhu, C., & Xie, G. (2006). Antioxidant properties of Chinese yellow wine, its concentrate and volatiles. LWT- Food Science and Technology, 39, 111–117.CrossRefGoogle Scholar
  33. 33.
    Wu, G. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids, 37, 1–17.CrossRefGoogle Scholar
  34. 34.
    FAO/WHO. (1991). Report of the joint FAO/WHO expert consultation (p. 51). Rome: FAO Food and Nutrition.Google Scholar
  35. 35.
    Manna, P., Sinha, M., & Sil, P. C. (2009). Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids, 36, 417–428.CrossRefGoogle Scholar
  36. 36.
    Hu, C. A. A., Khalil, S., Zhaorigetu, S., Liu, Z., Tyler, M., Wan, G., & Valle, D. (2008). Human Δ 1-pyrroline-5-carboxylate synthase: function and regulation. Amino Acids, 35, 665–672.CrossRefGoogle Scholar
  37. 37.
    Son, H. Y., Kim, H., & H kwon, Y. (2007). Taurine prevents oxidative damage of high glucose-induced cataractogenesis in isolated rat lenses. Journal of Nutritional Science and Vitaminology, 53, 324–330.CrossRefGoogle Scholar
  38. 38.
    Kim, J. K., Starzak, M., Preckshot, G. W., Marshall, R., & Bajpai, R. K. (1994). Critical reactions in ripening of cheeses. Applied Biochemistry and Biotechnology, 45, 51–68.CrossRefGoogle Scholar
  39. 39.
    Jeon, J. M., Lee, H. I., Han, S. H., Chang, C. S., & So, J. S. (2010). Partial purification and characterization of glutaminase from Lactobacillus reuteri KCTC3594. Applied Biochemistry and Biotechnology, 162, 146–154.CrossRefGoogle Scholar
  40. 40.
    Jones, D. L. (1998). Organic acids in the rhizosphere-a critical review. Plant and Soil, 205, 25–44.CrossRefGoogle Scholar
  41. 41.
    Bhandari, M. R., & Kawabata, J. (2004). Organic acid, phenolic content and antioxidant activity of wild yam (Dioscorea spp.) tubers of Nepal. Food Chemistry, 88, 163–168.CrossRefGoogle Scholar
  42. 42.
    GülēIn, I., Oktay, M., KIreēcI, E., & KüfrevIoǧlu, O. I. (2003). Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chemistry, 83.Google Scholar
  43. 43.
    Meir, S., Kanner, J., Akiri, B., & Philosoph-Hadas, S. (1995). Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43, 1813–1819.CrossRefGoogle Scholar
  44. 44.
    Stadtman, E., & Levine, R. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25, 207–218.CrossRefGoogle Scholar
  45. 45.
    Wu, H.-C., Chen, H.-M., & Shiau, C.-Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Research International, 36, 949–957.CrossRefGoogle Scholar
  46. 46.
    Castagnino, E., Francesca Ottaviani, M., Cangiotti, M., Morelli, M., Casettari, L., & Muzzarelli, R. A. (2008). Radical scavenging activity of 5-methylpyrrolidinone chitosan and dibutyryl chitin. Carbohydrate Polymers, 74, 640–647.CrossRefGoogle Scholar
  47. 47.
    Wang, S. L., Liang, T. W., & Yen, Y. H. (2011). Bioconversion of chitin-containing wastes for the production of enzymes and bioactive materials. Carbohydrate Polymers, 84, 732–742.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xiangzhao Mao
    • 1
    Email author
  • Pei Liu
    • 1
  • Shuai He
    • 1
  • Jieling Xie
    • 1
  • Feifei Kan
    • 1
  • Chunyu Yu
    • 1
  • Zhaojie Li
    • 1
    Email author
  • Changhu Xue
    • 1
  • Hong Lin
    • 1
  1. 1.College of Food Science and EngineeringOcean University of ChinaQingdaoChina

Personalised recommendations