Applied Biochemistry and Biotechnology

, Volume 170, Issue 2, pp 281–291 | Cite as

Computational Approach for Identification of Anopheles gambiae miRNA Involved in Modulation of Host Immune Response

  • Krishnaraj Thirugnanasambantham
  • Villianur Ibrahim Hairul-Islam
  • Subramanian Saravanan
  • Subramaniyan Subasri
  • Ariraman Subastri


MicroRNAs (miRNAs) are small, noncoding RNAs that play key roles in regulating gene expression in animals, plants, and viruses, which involves in biological processes including development, cancer, immunity, and host–microorganism interactions. In this present study, we have used the computational approach to identify potent miRNAs involved in Anopheles gambiae immune response. Analysis of 217,261 A. gambiae ESTs and further study of RNA folding revealed six new miRNAs. The minimum free energy of the predicted miRNAs ranged from −27.2 to −62.63 kcal/mol with an average of −49.38 kcal/mol. While its A + U % ranges from 50 to 65 % with an average value of 57.37 %. Phylogenetic analysis of the predicted miRNAs revealed that aga-miR-277 was evolutionary highly conserved with more similarity with other mosquito species. Observing further the target identification of the predicted miRNA, it was noticed that the aga-miR-2304 and aga-miR-2390 are involved in modulation of immune response by targeting the gene encoding suppressin and protein prophenoloxidase. Further detailed studies of these miRNAs will help in revealing its function in modulation of A. gambiae immune response with respect to its parasite.


miRNA A. gambiae Immune response miRNA target EST sequence 



All the authors are thankful to the Pondicherry Centre for Biological centre (PCBS) for providing the necessary facility to carry out the work. Financial support as startup loan from State Bank of India (RASMECC), Pondicherry, India to establish the institute is also gratefully acknowledged.


  1. 1.
    Reinhart, B. J., Weinstein, E. G., Rhoades, M. W., Bartel, B., & Bartel, D. P. (2002). MicroRNAs in plants. Genes and Development, 16(13), 1616–1626.CrossRefGoogle Scholar
  2. 2.
    Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.CrossRefGoogle Scholar
  3. 3.
    Lee, Y., Jeon, K., Lee, J. T., Kim, S., & Kim, V. N. (2002). MicroRNA maturation: stepwise processing and subcellular. EMBO Journal, 21(17), 4663–4670.CrossRefGoogle Scholar
  4. 4.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.CrossRefGoogle Scholar
  5. 5.
    Hammond, S. C., Bernstein, E., Beach, D., & Hannon, G. J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in drosophila cells. Nature, 404(6775), 293–296.CrossRefGoogle Scholar
  6. 6.
    Ambros, V., & Lee, R. C. (2004). Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning. Methods Mol Biol, 265, 131–158.Google Scholar
  7. 7.
    Berezikov, E., Cuppen, E., & Plasterk, R. H. (2006). Approaches to microRNA discovery. Nat Genet, 38, S2–S7.CrossRefGoogle Scholar
  8. 8.
    Xie, J., Techritz, S., Haebel, S., Horn, A., Neitzel, H., Klose, J., et al. (2005). A two-dimensional electrophoretic map of human mitochondrial proteins from immortalized lymphoblastoid cell lines: a prerequisite to study mitochondrial disorders in patients. Proteomics, 5(11), 2981–2999.CrossRefGoogle Scholar
  9. 9.
    Manguin, S., Bangs, M. J., Pothikasikorn, J., & Chareonviriyaphap, T. (2010). Review on global co-transmission of human Plasmodium species and Wuchereria bancrofti by Anopheles mosquitoes. Infection, Genetics and Evolution, 10(2), 159–177.CrossRefGoogle Scholar
  10. 10.
    Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.CrossRefGoogle Scholar
  11. 11.
    Holt, R. A., Subramanian, G. M., Halpern, A., Sutton, G. G., Charlab, R., Nusskern, D. R., et al. (2002). The genome sequence of the malaria mosquito Anopheles gambiae. Science, 298(5591), 129–149.CrossRefGoogle Scholar
  12. 12.
    Cameron, J. E., Yin, Q., Fewell, C., Lacey, M., Mcbride, J., Wang, X., et al. (2008). The Epsteinn–Barr virus latent membrane protein 1 (LMP1) induces cellular miRNA-146a, a modulator of lymphocyte signaling pathways. Journal of Virology, 82(4), 1946–1958.CrossRefGoogle Scholar
  13. 13.
    Pedersen, I. M., Cheng, G., Wieland, S., Volinia, S., Croce, C. M., Chisari, F. V., et al. (2007). Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature, 449(7164), 919–922.CrossRefGoogle Scholar
  14. 14.
    Xiao, C., & Rajewsky, K. (2009). MicroRNA control in the immune system: basic principles. Cell, 136(1), 26–36.CrossRefGoogle Scholar
  15. 15.
    Lei, X., Bai, Z., Ye, F., Xie, J., Kim, C. G., Huang, Y., et al. (2010). Regulation of NF-kappaB inhibitor IkappaBalpha and viral replication by a KSHV microRNA. Nat Cell Biol, 12(2), 193–199.CrossRefGoogle Scholar
  16. 16.
    Zeiner, G. M., Norman, K. L., Thomson, J. M., Hammond, S. M., & Boothroyd, J. C. (2010). Toxoplasma gondii infection specifically increases the levels of key host microRNAs. PLoS ONE, 5(1), e8742.CrossRefGoogle Scholar
  17. 17.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. J Mol Biol, 215(3), 403–410.Google Scholar
  18. 18.
    Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties, and weight matrix choice. Nucleic Acids Res, 22(22), 4673–4680.CrossRefGoogle Scholar
  19. 19.
    Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17), 3389–3402.CrossRefGoogle Scholar
  20. 20.
    Zhang, B., Pan, X., & Anderson, T. A. (2006). Identification of 188 conserved maize microRNAs and their targets. FEBS Lett, 580(15), 3753–3762.CrossRefGoogle Scholar
  21. 21.
    Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., & Eddy, S. R. (2003). Rfam: an RNA family database. Nucleic Acids Res, 31(1), 439–441.CrossRefGoogle Scholar
  22. 22.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol, 24(8), 1596–1599.CrossRefGoogle Scholar
  23. 23.
    Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA, 101(30), 11030–11035.CrossRefGoogle Scholar
  24. 24.
    Chen, S., Zhang, A., Blyn, L. B., & Storz, G. (2004). MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. J Bacteriol, 186(20), 6689–6697.CrossRefGoogle Scholar
  25. 25.
    Esau, C., Kang, X. L., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L. V., et al. (2004). MicroRNA-143 regulates adipocyte differentiation. J Biol Chem, 279(50), 52361–52365.CrossRefGoogle Scholar
  26. 26.
    Zhao, F., Xuan, Z., Liu, L., & Zhang, M. Q. (2005). TRED: a transcriptional regulatory element database and a platform for in silico gene regulation studies. Nucleic Acids Res, 33, D103–D107.CrossRefGoogle Scholar
  27. 27.
    Poy, M. N., Eliasson, L., Krutzfeldt, J., Kuwajima, S., Ma, X., Macdonald, P. E., et al. (2004). A pancreatic islet-specific microRNA regulates insulin secretion. Nature, 432(7014), 226–230.CrossRefGoogle Scholar
  28. 28.
    Lecellier, C., Dunoyer, P., Arar, K., Lehmann-Che, J., Eyquem, S., Himber, C., et al. (2005). A cellular microRNA mediates antiviral defense in human cells. Science, 308(5721), 557–560.CrossRefGoogle Scholar
  29. 29.
    Martello, G., Rosato, A., Ferrari, F., Manfrin, A., Cordenonsi, M., Dupont, S., et al. (2010). A microRNA targeting dicer for metastasis control. Cell, 141(7), 1195–1207.CrossRefGoogle Scholar
  30. 30.
    Chatterjee, R., & Chaudhuri, K. (2006). An approach for the identification of microRNA with an application to Anopheles gambiae. Acta Biochim Pol, 53(2), 303–309.Google Scholar
  31. 31.
    Hackl, M., Jadhav, V., Jakobi, T., Rupp, O., Brinkrolf, K., Goesmann, A., et al. (2012). Computational identification of microRNA gene loci and precursor microRNA sequences in CHO cell lines. J Biotechnol, 158(3), 151–155.CrossRefGoogle Scholar
  32. 32.
    Mead, E. A., & Tu, Z. (2008). Cloning, characterization, and expression of microRNAs from the Asian malaria mosquito, Anopheles stephensi. BMC Genomics, 9, 244. doi: 10.1186/1471-2164-9-244.CrossRefGoogle Scholar
  33. 33.
    Hussain, M., Frentiu, F. D., Moreira, L. A., O’Neill, S. L., & Asgari, S. (2011). Wolbachia uses host microRNAs to manipulate host gene expression and facilitate colonization of the dengue vector Aedes aegypti. Proc Natl Acad Sci USA, 108(22), 9250–9255.CrossRefGoogle Scholar
  34. 34.
    Winter, F., Edaye, S., Huttenhofer, A., & Brunel, C. (2007). Anopheles gambiae miRNAs as actors of defense reaction against Plasmodium invasion. Nucleic Acids Res, 35(20), 6953–6962.CrossRefGoogle Scholar
  35. 35.
    Skalsky, R., Vanlandingham, D. L., Scholle, F., Higgs, S., & Cullen, B. R. (2010). Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus. BMC Genomics, 11, 119. doi: 10.1186/1471-2164-11-119.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Krishnaraj Thirugnanasambantham
    • 1
  • Villianur Ibrahim Hairul-Islam
    • 1
  • Subramanian Saravanan
    • 2
  • Subramaniyan Subasri
    • 1
    • 3
  • Ariraman Subastri
    • 1
    • 3
  1. 1.Pondicherry Centre for Biological Sciences, Jawahar NagarPondicherryIndia
  2. 2.Division of Ethnopharmacology, Entomology Research InstituteLoyola CollegeChennaiIndia
  3. 3.Department of Biochemistry and Molecular biologySchool of Life Sciences, Pondicherry UniversityPondicherryIndia

Personalised recommendations