Applied Biochemistry and Biotechnology

, Volume 170, Issue 1, pp 219–230 | Cite as

A Novel Ribonuclease with HIV-1 Reverse Transcriptase Inhibitory Activity from the Edible Mushroom Hygrophorus russula



A 28-kDa ribonuclease, with an optimum pH of 4.0 and an optimum temperature at 58 °C, was isolated from fruiting bodies of the edible mushroom Hygrophorus russula. It was purified by ion exchange chromatography on carboxymethyl-cellulose, dithyaminoethyl-cellulose, quaternary amine-sepharose and sulphopropyl-sepharose, followed by fast protein liquid chromatography gel filtration on Superdex 75. The N-terminal amino acid sequence was ASAGG which showed homology to those of other fungal RNases to some degree. It exerted the highest RNase activity on poly C and poly U. The Michaelis constant (Km) value of the RNase on yeast tRNA was 3.6 μM, and the maximal velocity (Vmax) was 0.6 μM. The RNase activity was suppressed by some ions including Fe2+ and Zn2+ ions. The RNase inhibited the activity of HIV-1 reverse transcriptase with an IC50 of 4.64 μM.


Ribonuclease Purification HIV-1 reverse transcriptase Edible mushroom Hygrophorus russula 


  1. 1.
    Norioka, S., Oneyama, C., Takuma, S., Shinkawa, T., Ishimizu, T., Nakanishi, T., et al. (2007). Purification and characterization of a non-S-RNase and S-RNases from styles of Japanese pear (Pyrus pyrifolia). Plant Physiology and Biochemistry, 45(12), 878–886.CrossRefGoogle Scholar
  2. 2.
    Schein, A., Sheffy-Levin, S., Glaser, F., & Schuster, G. (2008). The RNase E/G-type endoribonuclease of higher plants is located in the chloroplast and cleaves RNA similarly to the E. coli enzyme. RNA, 14(6), 1057–1068.CrossRefGoogle Scholar
  3. 3.
    Tanaka, N., Arai, J., Inokuchi, N., Koyama, T., Ohgi, K., Irie, M., et al. (2000). Crystal structure of a plant ribonuclease, RNase LE. Journal of Molecular Biology, 298(5), 859–873.CrossRefGoogle Scholar
  4. 4.
    Fang, E. F., & Ng, T. B. (2011). Ribonucleases of different origins with a wide spectrum of medicinal applications. Biochimica et Biophysica Acta, 1815(1), 65–74.Google Scholar
  5. 5.
    Newton, D. L., Stockwin, L. H., & Rybak, S. M. (2009). Anti-CD22 onconase: preparation and characterization. Methods Mol Biol, 525, 425–43. xiv.CrossRefGoogle Scholar
  6. 6.
    Mamolen, M., & Andrulis, E. D. (2009). Characterization of the Drosophila melanogaster Dis3 ribonuclease. Biochemical and Biophysical Research Communications, 390(3), 529–534.CrossRefGoogle Scholar
  7. 7.
    Vourekas, A., Vryzaki, E., Toumpeki, C., Stamatopoulou, V., Monastirli, A., Tsambaos, D., et al. (2009). Partial purification and characterization of RNase P from human peripheral lymphocytes. Experimental Dermatology, 18(2), 130–133.CrossRefGoogle Scholar
  8. 8.
    Aphanasenko, G. A., Dudkin, S. M., Kaminir, L. B., Leshchinskaya, I. B., & Severin, E. S. (1979). Primary structure of ribonuclease from Bacillus intermedius 7P. FEBS Letters, 97(1), 77–80.CrossRefGoogle Scholar
  9. 9.
    Sana, B., Ghosh, D., Saha, M., & Mukherjee, J. (2008). Purification and characterization of an extracellular, uracil specific ribonuclease from a Bizionia species isolated from the marine environment of the Sundarbans. Microbiology Research, 163(1), 31–38.CrossRefGoogle Scholar
  10. 10.
    Hlinkova, V., Urbanikova, L., Krajcikova, D., & Sevcik, J. (2001). Purification, crystallization and preliminary X-ray analysis of two crystal forms of ribonuclease Sa3. Acta Crystallographica Section D: Biological Crystallography, 57(Pt 5), 737–739.CrossRefGoogle Scholar
  11. 11.
    Kobayashi, H., Inokuchi, N., Koyama, T., Watanabe, H., Iwama, M., Ohgi, K., et al. (1992). Primary structure of a base non-specific and adenylic acid preferential ribonuclease from the fruit bodies of Lentinus edodes. Bioscience, Biotechnology, and Biochemistry, 56(12), 2003–2010.CrossRefGoogle Scholar
  12. 12.
    Wang, H., & Ng, T. B. (1999). Isolation of a new ribonuclease from fresh fruiting bodies of the straw mushroom. Biochemical and Biophysical Research Communications, 264(3), 714–718.CrossRefGoogle Scholar
  13. 13.
    Ngai, P. H., Wang, H. X., & Ng, T. B. (2003). Purification and characterization of a ubiquitin-like peptide with macrophage stimulating, antiproliferative and ribonuclease activities from the mushroom Agrocybe cylindracea. Peptides, 24(5), 639–645.CrossRefGoogle Scholar
  14. 14.
    Zhang, R. Y., Zhang, G. Q., Hu, D. D., Wang, H. X., & Ng, T. B. (2010). A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Lyophyllum shimeiji. Biochemical Genetics, 48(7-8), 658–668.CrossRefGoogle Scholar
  15. 15.
    Ercole, C., Spadaccini, R., Alfano, C., Tancredi, T., & Picone, D. (2007). A new mutant of bovine seminal ribonuclease with a reversed swapping propensity. Biochemistry, 46(8), 2227–2232.CrossRefGoogle Scholar
  16. 16.
    Zhao, S., Zhao, Y., Li, S., Zhang, G., Wang, H., & Ng, T. B. (2010). An antiproliferative ribonuclease from fruiting bodies of the wild mushroom Russula delica. Journal of Microbiology and Biotechnology, 20(4), 693–699.CrossRefGoogle Scholar
  17. 17.
    Guan, G. P., Wang, H. X., & Ng, T. B. (2007). A novel ribonuclease with antiproliferative activity from fresh fruiting bodies of the edible mushroom Hypsizigus marmoreus. Biochimica et Biophysica Acta, 1770(12), 1593–1597.CrossRefGoogle Scholar
  18. 18.
    Wang, H. X., & Ng, T. B. (2001). Purification and characterization of a potent homodimeric guanine-specific ribonuclease from fresh mushroom (Pleurotus tuber-regium) sclerotia. The International Journal of Biochemistry and Cell Biology, 33(5), 483–490.CrossRefGoogle Scholar
  19. 19.
    Wang, H., & Ng, T. B. (2003). A novel ribonuclease from the veiled lady mushroom Dictyophora indusiata. Biochemical Cell Biology, 81(6), 373–377.CrossRefGoogle Scholar
  20. 20.
    Lam, Y. W., & Ng, T. B. (2001). A monomeric mannose-binding lectin from inner shoots of the edible chive (Allium tuberosum). Journal of Protein Chemistry, 20(5), 361–366.CrossRefGoogle Scholar
  21. 21.
    Zhao, J. K., Wang, H. X., & Ng, T. B. (2009). Purification and characterization of a novel lectin from the toxic wild mushroom Inocybe umbrinella. Toxicon, 53(3), 360–366.CrossRefGoogle Scholar
  22. 22.
    Zhao, Y. C., Zhang, G. Q., Ng, T. B., & Wang, H. X. (2011). A novel ribonuclease with potent HIV-1 reverse transcriptase inhibitory activity from cultured mushroom Schizophyllum commune. Journal of Microbiology, 49(5), 803–808.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.State Key Laboratory for Agrobiotechnology and Department of MicrobiologyChina Agricultural UniversityBeijingChina
  2. 2.School of Biomedical Sciences, Faculty of MedicineThe Chinese University of Hong KongShatin, New TerritoriesHong Kong, China

Personalised recommendations