Advertisement

Applied Biochemistry and Biotechnology

, Volume 169, Issue 8, pp 2374–2391 | Cite as

Candida Biofilm Disrupting Ability of Di-rhamnolipid (RL-2) Produced from Pseudomonas aeruginosa DSVP20

  • Nivedita Singh
  • Suma C. Pemmaraju
  • Parul A. Pruthi
  • Swaranjit S. Cameotra
  • Vikas PruthiEmail author
Article

Abstract

Biosurfactant produced from Pseudomonas aeruginosa DSVP20 was evaluated for its potential to disrupt Candida albicans biofilm formed on polystyrene (PS) surfaces in this investigation. P. aeruginosa DSVP20 exhibited optimum production of biosurfactant (5.8 g L−1) after 96 h of growth with an ability to reduce surface tension of the aqueous solution from 72 to 28 mN m−1. Analysis of purified biosurfactant with FT-IR, 1H and 13C NMR and MALDI-TOF MS revealed it to be di-rhamnolipid (RL-2) in nature. Biofilm disrupting ability of RL-2 (0.16 mg mL−1) on Candida cells when checked using XTT reduction assay revealed that about 50 % of the cells remain adhered to 96-well plate after 2 h of treatment, while up to 90 % reduction in pre-formed C. albicans biofilm on PS surface was observed with RL-2 (5.0 mg mL−1) in a dose-dependent manner. Microscopic analyses (SEM and CLSM) further confirm the influence of RL-2 on disruption of Candida biofilm extracellular matrix on PS surface which can be exploited as a potential alternative to the available conventional therapies.

Keywords

Di-rhamnolipid Candida albicans Biofilm Surface tension CLSM 

References

  1. 1.
    Yu, H., & Huang, G. H. (2011). Soil Sediment Contamination, 20, 274–278.CrossRefGoogle Scholar
  2. 2.
    Nitschke, M., & Costa, S. (2007). Trends in Food Science and Technology, 18, 252–259.CrossRefGoogle Scholar
  3. 3.
    Dusane, D. H., Nancharaiah, Y. V., Zinjarde, S. S., & Venugopalan, V. P. (2010). Colloids and Surfaces. B, Biointerfaces, 81, 242–248.CrossRefGoogle Scholar
  4. 4.
    Irie, Y., O’Toole, G. A., & Yuk, M. H. (2005). FEMS Microbiology Letters, 250, 237–243.CrossRefGoogle Scholar
  5. 5.
    Rodrigues, L. R., Banat, I. M., van der Mei, H. C., Teixeira, J. A., & Oliveira, R. (2006). Journal of Applied Microbiology, 100, 470–480.CrossRefGoogle Scholar
  6. 6.
    Stanghellini, M. E., & Miller, R. M. (1997). Plant Disease, 81, 4–12.CrossRefGoogle Scholar
  7. 7.
    Wang, X., Gong, L., Liang, S., Han, X., Zhu, C., & Li, Y. (2005). Harmful Algae, 4, 433–443.CrossRefGoogle Scholar
  8. 8.
    de Araujo, L. V., Abreu, F., Lins, U., de Melo Santa Anna, L. M., Nitschke, M., & Freire, D. M. G. (2011). Food Research International, 44, 481–488.CrossRefGoogle Scholar
  9. 9.
    Cao, Y., Dai, B., Wang, Y., Huang, S., Xu, Y., Cao, Y., et al. (2008). International Journal of Antimicrobial Agents, 32, 73–77.CrossRefGoogle Scholar
  10. 10.
    An, M., Shen, H., Cao, Y. B., Zhang, J. D., Cai, Y., Wang, R., et al. (2009). International Journal of Antimicrobial Agents, 33, 258–263.CrossRefGoogle Scholar
  11. 11.
    Chandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T., & Ghannoum, M. A. (2001). Journal of Bacteriology, 183, 5385–5394.CrossRefGoogle Scholar
  12. 12.
    Agarwal, V., Lal, P., & Pruthi, V. (2008). Mycopathologia, 165, 13–19.CrossRefGoogle Scholar
  13. 13.
    Jain, N., Kohli, R., Cook, E., Gialanella, P., Chang, T., & Fries, B. C. (2007). Applied and Environmental Microbiology, 73, 1697–1703.CrossRefGoogle Scholar
  14. 14.
    Bruzual, I., Riggle, P., Hadley, S., & Kumamoto, C. A. (2007). Journal of Antimicrobial Chemotherapy, 59, 441–450.CrossRefGoogle Scholar
  15. 15.
    Law, D., Moore, C. B., Wardle, H. M., Ganguli, L. A., Keaney, M. G. L., & Denning, D. W. (1994). Journal of Antimicrobial Chemotherapy, 34, 659–668.CrossRefGoogle Scholar
  16. 16.
    Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508.CrossRefGoogle Scholar
  17. 17.
    Rivardo, F., Turner, R. J., Allegrone, G., Ceri, H., & Martinotti, M. G. (2009). Applied Microbiology and Biotechnology, 83, 541–553.CrossRefGoogle Scholar
  18. 18.
    Pruthi, V., & Cameotra, S. S. (2003). Journal of Surfactants and Detergents, 6, 65–68.CrossRefGoogle Scholar
  19. 19.
    Plaza, G., Zjawiony, I., & Banat, I. (2006). Journal of Petroleum Science and Engineering, 50, 71–77.CrossRefGoogle Scholar
  20. 20.
    Chen, S. Y., Wei, Y. H., & Chang, J. S. (2007). Applied Microbiology and Biotechnology, 76, 67–74.CrossRefGoogle Scholar
  21. 21.
    Caiazza, N. C., Shanks, R. M. Q., & O’Toole, G. A. (2005). Journal of Bacteriology, 187, 7351–7361.CrossRefGoogle Scholar
  22. 22.
    Pemmaraju, S. C., Sharma, D., Singh, N., Panwar, R., Cameotra, S. S., & Pruthi, V. (2012). Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-012-9613-z.
  23. 23.
    Cameotra, S. S., & Singh, P. (2009). Microbial Cell Factories, 8, 16.CrossRefGoogle Scholar
  24. 24.
    Sneath, P. H. A., Mair, N. S., & Sharpe, M. E. (1986). Bergey’s Manual of Systematic Bacteriology Vol. 2 (pp. 999–1436). Baltimore: Williams & Wilkins.Google Scholar
  25. 25.
    De Clerck, E., Rodrıguez-Dıaz, M., Vanhoutte, T., Heyrman, J., Logan, N. A., & De Vos, P. (2004). International Journal of Systematic and Evolutionary Microbiology, 54, 941–946.CrossRefGoogle Scholar
  26. 26.
    Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Letters in Applied Microbiology, 8, 151–156.CrossRefGoogle Scholar
  27. 27.
    Christova, N., Tuleva, B., Lalchev, Z., Jordanova, A., & Jordanov, B. (2004). Zeitschrift für Naturforschung, 59c, 70–74.Google Scholar
  28. 28.
    Chandrasekaran, E. V., & Bemiller, J. N. (1980). In R. L. Whistler & M. L. Wolfrom (Eds.), Methods in carbohydrate chemistry, constituent analysis of glycosaminoglycans (pp. 89–96). New York: Academic Press.Google Scholar
  29. 29.
    Worakitsiri, P., Pornsunthorntaweea, O., Thanpitcha, T., Chavadej, S., Weder, C., & Rujiravanit, R. (2011). Synthetic Metals, 161, 298–306.CrossRefGoogle Scholar
  30. 30.
    Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., et al. (2006). Bioresource Technology, 97, 2457–2461.CrossRefGoogle Scholar
  31. 31.
    Silva, W. J., Seneviratne, J., Parahitiyawa, N., Rosa, E. A., Samaranayake, L. P., & Cury, A. A. (2008). Brazilian Dental Journal, 19, 364–369.Google Scholar
  32. 32.
    Lal, P., Sharma, D., Pruthi, P., & Pruthi, V. (2010). Journal of Applied Microbiology, 109, 128–136.Google Scholar
  33. 33.
    Felsenstein, J. (1989). PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164–166.Google Scholar
  34. 34.
    Parreira, A. G., Tótola, M. R., Jham, G. N., Da Silva, S. L., & Borges, A. C. (2011). British Biotechnology Journal, 1, 18–28.Google Scholar
  35. 35.
    Mishra, S., Jyot, J., Kuhad, R. C., & Lal, B. (2001). Applied and Environmental Microbiology, 67, 1675–1681.CrossRefGoogle Scholar
  36. 36.
    Hazra, C., Kundu, D., Ghosh, P., Joshi, S., Dandia, N., & Chaudharia, A. (2011). Journal of Chemical Technology and Biotechnology, 86, 185–198.CrossRefGoogle Scholar
  37. 37.
    Wei, Y., Cheng, C., Chien, C., & Wan, H. (2008). Process Biochemistry, 43, 69–77.CrossRefGoogle Scholar
  38. 38.
    Abdel-Mawgoud, A. M., Aboulwafa, M., & Hassouna, N. (2009). Applied Biochemistry and Biotechnology, 157, 329–345.CrossRefGoogle Scholar
  39. 39.
    Bharali, P., & Konwar, B. K. (2011). Applied Biochemistry and Biotechnology, 164, 1444–1460.CrossRefGoogle Scholar
  40. 40.
    Pornsunthorntawee, O., Maksung, S., Huayyai, O., Rujiravanit, R., & Chavadej, S. (2009). Bioresource Technology, 100, 812–818.CrossRefGoogle Scholar
  41. 41.
    Deziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Biochimica et Biophysica Acta, 1485, 145–152.CrossRefGoogle Scholar
  42. 42.
    Ganesh, A., & Lin, J. (2009). African Journal of Biotechnology, 8, 5847–5854.Google Scholar
  43. 43.
    Deziel, E., Lépine, F., Dennie, D., Boismenu, D., Mamer, O. A., & Villemur, R. (1999). Biochimica et Biophysica Acta, 1440, 244–252.CrossRefGoogle Scholar
  44. 44.
    Nitschke, M., Costa, S. G., Haddad, R., Goncalves, L. A., Eberlin, M. N., & Contiero, J. (2005). Biotechnology Progress, 21, 1562–1566.CrossRefGoogle Scholar
  45. 45.
    Soberon-Chavez, G., Lepine, F., & Deziel, E. (2005). Applied Microbiology and Biotechnology, 68, 718–725.CrossRefGoogle Scholar
  46. 46.
    Razaa, A. Z., Khana, M. S., Khalid, Z. M., & Rehmanb, A. (2006). Zeitschrift für Naturforschung, 61c, 87–94.Google Scholar
  47. 47.
    Nett, J. E., Guite, K. M., Ringeisen, A., Holoyda, K. A., & Andes, D. R. (2008). Antimicrobial Agents and Chemotherapy, 52, 3411–3413.CrossRefGoogle Scholar
  48. 48.
    Sotirova, A. V., Spasova, D. I., Galabova, D. N., Karpenko, E., & Shulga, A. (2010). Current Microbiology, 56, 639–644.CrossRefGoogle Scholar
  49. 49.
    Fracchia, L., Cavallo, M., Allegrone, G., & Martinotti, M. G. (2010). In A. Mendez-Vilas (Ed.), Current research technology and education topics in applied microbiology and microbial technology, vol. 2: A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Spain: Formatex.Google Scholar
  50. 50.
    Davey, M. E., Caiazza, N. C., & OToole, G. A. (2003). Journal of Bacteriology, 185, 1027–1036.CrossRefGoogle Scholar
  51. 51.
    Carrillo, C., Teruel, J., Aranda, F., & Ortiz, A. (2003). Biochimica et Biophysica Acta, 1611, 91–97.CrossRefGoogle Scholar
  52. 52.
    Borecka-Melkusova, S., & Bujadakova, H. (2008). Canadian Journal of Microbiology, 54, 718–724.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nivedita Singh
    • 1
  • Suma C. Pemmaraju
    • 1
  • Parul A. Pruthi
    • 1
  • Swaranjit S. Cameotra
    • 2
  • Vikas Pruthi
    • 1
    Email author
  1. 1.Indian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Institute of Microbial Technology (IMTECH)ChandigarhIndia

Personalised recommendations