Advertisement

Applied Biochemistry and Biotechnology

, Volume 169, Issue 8, pp 2362–2373 | Cite as

Adaptive Evolution of Saccharomyces cerevisiae in a Continuous and Closed Circulating Fermentation (CCCF) System Coupled with PDMS Membrane Pervaporation

  • Chun-yan Chen
  • Xiao-yu Tang
  • Ze-yi XiaoEmail author
  • Yi-hui Zhou
  • Yue Jiang
  • Sheng-wei Fu
Article

Abstract

As an efficient means of strain improvement, adaptive evolution is a technique with great potential. Long-term cultivation of Saccharomyces cerevisiae was performed in a polydimethylsiloxane membrane bioreactor system which was constructed by coupling the fermentation with pervaporation. A parent strain was subjected to three rounds of fermentation–screening–transfer procedure lasting 1,500 h in a continuous and closed circulating fermentation (CCCF) system, and its 600-generation descendant S33 was screened. In shaking flask culture test, the selected strain S33 from the third round showed great superiority over the parent strain in the residual broth medium, with the ethanol yield and specific ethanol productivity increasing by 34.5 and 34.7 %, respectively. In the long-term CCCF test, the fermentation performance of the descendant strain in the third round was higher than that of its parent strain in the second round. These results show the potential of this novel adaptive evolution approach in optimization of yeast strains.

Keywords

PDMS membrane bioreactor Saccharomyces cerevisiae Closed circulating fermentation Adaptive evolution 

Notes

Acknowledgments

The present work was supported by the National Natural Science Foundation of China (grant no. 20776088).

Conflict of interest

The authors have declared no conflict of interest.

References

  1. 1.
    Brennan, L., & Owende, P. (2010). Renewable and Sustainable Energy Reviews, 14, 557–577.CrossRefGoogle Scholar
  2. 2.
    Bialas, W., Szymanowska, D., & Grajek, W. (2010). Bioresource Technology, 101, 3126–3131.CrossRefGoogle Scholar
  3. 3.
    Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Biotechnology Advances, 26, 89–105.CrossRefGoogle Scholar
  4. 4.
    Lin, Y., & Tanaka, S. (2006). Applied Microbiology and Biotechnology, 69, 627–642.CrossRefGoogle Scholar
  5. 5.
    Li, S. Z., & Chan-Halbrendt, C. (2009). Applied Energy, 86, S162–S169.CrossRefGoogle Scholar
  6. 6.
    Basso, L. C., de Amorim, H. V., de Oliveira, A. J., & Lopes, M. L. (2008). FEMS Yeast Research, 8, 1155–1163.CrossRefGoogle Scholar
  7. 7.
    Nwachukwu, I. N., Ibekwe, V. I., Nwabueze, R. N., Anyanwu, B. N., Ezeji, U., Kalu, I., et al. (2008). Life Science Journal-Acta Zhengzhou University Overseas Edition, 5, 64–68.Google Scholar
  8. 8.
    Cheney, D. P. (1997). Phycologia, 36, 18–18.Google Scholar
  9. 9.
    Katahira, S., Mizuike, A., Fukuda, H., & Kondo, A. (2006). Applied Microbiology and Biotechnology, 72, 1136–1143.CrossRefGoogle Scholar
  10. 10.
    Jeffries, T. W. (2006). Current Opinion in Biotechnology, 17, 320–326.CrossRefGoogle Scholar
  11. 11.
    Saha, B. C., & Cotta, M. A. (2011). Applied Microbiology and Biotechnology, 90, 477–487.CrossRefGoogle Scholar
  12. 12.
    Wang, H. Y., & Hou, L. H. (2010). Food Science and Biotechnology, 19, 145–150.CrossRefGoogle Scholar
  13. 13.
    Hou, L. H. (2010). Applied Biochemistry and Biotechnology, 160, 1084–1093.CrossRefGoogle Scholar
  14. 14.
    Shi, D. J., Wang, C. L., & Wang, K. M. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 139–147.CrossRefGoogle Scholar
  15. 15.
    McBryde, C., Gardner, J. M., Lopes, M. D., & Jiranek, V. (2006). American Journal of Enology and Viticulture, 57, 423–430.Google Scholar
  16. 16.
    Sonderegger, M., & Sauer, U. (2003). Applied and Environmental Microbiology, 69, 1990–1998.CrossRefGoogle Scholar
  17. 17.
    Liu, E. K., & Hu, Y. (2010). Biochemical Engineering Journal, 48, 204–210.CrossRefGoogle Scholar
  18. 18.
    Guimaraes, P. M. R., Francois, J., Parrou, J. L., Teixeira, J. A., & Domingues, L. (2008). Applied and Environmental Microbiology, 74, 1748–1756.CrossRefGoogle Scholar
  19. 19.
    Stanley, D., Fraser, S., Chambers, P. J., Rogers, P., & Stanley, G. A. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 139–149.CrossRefGoogle Scholar
  20. 20.
    Pretorius, I. S., & Bauer, F. F. (2002). Trends in Biotechnology, 20, 426–432.CrossRefGoogle Scholar
  21. 21.
    Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., & van Maris, A. J. A. (2009). Applied and Environmental Microbiology, 75, 907–914.CrossRefGoogle Scholar
  22. 22.
    Stanley, D., Chambers, P. J., Stanley, G. A., Borneman, A., & Fraser, S. (2010). Applied Microbiology and Biotechnology, 88, 231–239.CrossRefGoogle Scholar
  23. 23.
    Stanley, D., Bandara, A., Fraser, S., Chambers, P. J., & Stanley, G. A. (2010). Journal of Applied Microbiology, 109, 13–24.Google Scholar
  24. 24.
    Ding, W. W., Wu, Y. T., Tang, X. Y., Yuan, L., & Xiao, Z. Y. (2011). Journal of Chemical Technology and Biotechnology, 86, 82–87.CrossRefGoogle Scholar
  25. 25.
    Vane, L. M. (2008). Biofuels Bioproducts & Biorefining-Biofpr, 2, 553–588.CrossRefGoogle Scholar
  26. 26.
    Ghosh, K., & Ramachandran, K. B. (2007). Chemical and Biochemical Engineering Quarterly, 21, 285–296.Google Scholar
  27. 27.
    Li, J. D., Zhan, X., Huang, J. Q., & Chen, C. X. (2010). Applied Biochemistry and Biotechnology, 160, 632–642.CrossRefGoogle Scholar
  28. 28.
    O’Brien, D. J., Roth, L. H., & McAloon, A. J. (2000). Journal of Membrane Science, 166, 105–111.CrossRefGoogle Scholar
  29. 29.
    Zhong, Y. H., Xiao, Z. Y., Huang, W. X., & Wu, Y. (2003). Journal of Sichuan University (Engineering Science Edition), 35, 49–53.Google Scholar
  30. 30.
    Tang, X. Y., Wang, R., Xiao, Z. Y., Shi, E., & Yang, J. (2007). Journal of Applied Polymer Science, 105, 3132–3137.CrossRefGoogle Scholar
  31. 31.
    Shi, E., Huang, W. X., Xiao, Z. Y., Li, D. H., & Tang, M. (2007). Journal of Applied Polymer Science, 104, 2468–2477.CrossRefGoogle Scholar
  32. 32.
    Li, L., Xiao, Z. Y., Tan, S. J., Liang, P., & Zhang, Z. B. (2004). Journal of Membrane Science, 243, 177–187.CrossRefGoogle Scholar
  33. 33.
    Cheng, J. S., Zhou, X., Ding, M. Z., & Yuan, Y. J. (2009). Applied Microbiology and Biotechnology, 83, 909–923.CrossRefGoogle Scholar
  34. 34.
    Rangel, D. E. N. (2011). World Journal of Microbiology and Biotechnology, 27, 1281–1296.CrossRefGoogle Scholar
  35. 35.
    Zeyl, C., Vanderford, T., & Carter, M. (2003). Science, 299, 555–558.CrossRefGoogle Scholar
  36. 36.
    Cakar, Z. P., Seker, U. O. S., Tamerler, C., Sonderegger, M., & Sauer, U. (2005). FEMS Yeast Research, 5, 569–578.CrossRefGoogle Scholar
  37. 37.
    Cho, C. W., & Hwang, S.-T. (1991). Journal of Membrane Science, 57, 21–42.CrossRefGoogle Scholar
  38. 38.
    Izak, P., Schwarz, K., Ruth, W., Bahl, H., & Kragl, U. (2008). Applied Microbiology and Biotechnology, 78, 597–602.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Chun-yan Chen
    • 1
  • Xiao-yu Tang
    • 1
  • Ze-yi Xiao
    • 1
    Email author
  • Yi-hui Zhou
    • 1
  • Yue Jiang
    • 1
  • Sheng-wei Fu
    • 1
  1. 1.School of Chemical EngineeringSichuan UniversityChengduChina

Personalised recommendations