Applied Biochemistry and Biotechnology

, Volume 169, Issue 7, pp 2202–2211 | Cite as

Immobilization of Yarrowia lipolytica for Aroma Production from Castor Oil



The main aim of this study was to compare different materials for Y. lipolytica immobilization that could be used in the production of γ-decalactone (a peach-like aroma) in order to prevent the toxic effect both of the substrate and the aroma upon the cells. Therefore, cells adsorption onto pieces of methyl polymethacrylate and of DupUM® was studied and further used in the biotransformation of castor oil into γ-decalactone. The highest aroma concentration was obtained with immobilized cells in DupUM®, where reconsumption of the aroma by the cells was prevented, contrarily to what happens with free cells. This is a very promising result for γ-decalactone production, with potential to be used at an industrial level since the use of immobilized cells system will facilitate the conversion of a batch process into a continuous mode keeping high cell density and allowing easier recovery of metabolic products.


γ-decalactone DupUM® Immobilized cells Methyl polymethacrylate Yarrowia lipolytica 



The authors acknowledge Fundação para a Ciência e Tecnologia (FCT) for the financial support provided (SFRH/BD/63701/2009).


  1. 1.
    Siek, T. J., Albin, I. A., Sather, L. A., & Lindsay, R. C. (1971). Journal of Dairy Science, 54, 1–9.CrossRefGoogle Scholar
  2. 2.
    Schrader, J., Etschmann, M. M. W., Sell, D., Hilmer, J.-M., & Rabenhorst, J. (2004). Biotechnology Letters, 26, 463–472.CrossRefGoogle Scholar
  3. 3.
    Pagot, Y., Le Clainche, A., Nicaud, J.-M., Waché, Y., & Belin, J.-M. (1998). Applied Microbiology and Biotechnology, 49, 295–300.CrossRefGoogle Scholar
  4. 4.
    Waché, Y., Aguedo, M., Nicaud, J.-M., & Belin, J.-M. (2003). Applied Microbiology and Biotechnology, 61, 393–404.Google Scholar
  5. 5.
    Aguedo, M., Beney, L., Waché, Y., & Belin, J.-M. (2009). Journal of Applied Microbiology, 94, 258–265.CrossRefGoogle Scholar
  6. 6.
    Lee, S. L., Cheng, H. Y., Chen, W. C., & Chou, C. C. (1998). Process Biochemistry, 33, 453–459.CrossRefGoogle Scholar
  7. 7.
    Neto, R. S., Pastore, G. M., & Macedo, G. A. (2004). Journal of Food Science, 69, 677–680.CrossRefGoogle Scholar
  8. 8.
    Lin, S. J., Lee, S. L., & Chou, C. C. (1996). Journal of Fermentation and Bioengineering, 82, 42–45.CrossRefGoogle Scholar
  9. 9.
    Matos, M., Alves, C., Campos, J. L., Brito, A. G., & Nogueira, R. (2011). Environmental Technology, 32, 1121–1129.CrossRefGoogle Scholar
  10. 10.
    Rochex, A., Lecouturier, D., Pezron, I., & Lebeault, J. M. (2004). Applied Microbiology and Biotechnology, 65, 727–733.CrossRefGoogle Scholar
  11. 11.
    Aguedo, M., Waché, Y., Mazoyer, V., Sequeira-LeGrand, A., & Belin, J.-M. (2003). Journal of Agricultural and Food Chemistry, 51, 3007–3011.CrossRefGoogle Scholar
  12. 12.
    Gonçalves, C., Rodriguez-Jasso, R. M., Gomes, N., Teixeira, J. A., & Belo, I. (2010). Analytical Methods, 2, 2046–2048.CrossRefGoogle Scholar
  13. 13.
    Gomes, N., Braga, A., Teixeira, J, & Belo, I. (2013). J. Am. Oil Chem. Soc (in press).Google Scholar
  14. 14.
    Kwok, D. Y., & Neumann, A. W. (1999). Advances in Colloid and Interface Science, 81, 167–249.CrossRefGoogle Scholar
  15. 15.
    Gomes, N., Teixeira, J. A., & Belo, I. (2010). Biocatal Biotransform, 28, 227–234.CrossRefGoogle Scholar
  16. 16.
    Kolot, F. B. (1981). Process Biochemistry, 16, 2–9.Google Scholar
  17. 17.
    Czaczyk, K., & Myszka, K. (2007). Polish Journal of Environmental Studies, 16, 799–806.Google Scholar
  18. 18.
    Klein, J., & Ziehr, H. (1990). Journal of Biotechnology, 16, 1–15.CrossRefGoogle Scholar
  19. 19.
    Mafu, A. K., Plumety, C., Deschênes, L. & Goulet, J. (2011) International Journal of Microbiology doi: 10.1155/2011/972494.
  20. 20.
    Aguedo, M., Gomes, N., Escamilla-Garcia, E., Waché, Y., Mota, M., Teixeira, J. A., et al. (2005). Biotechnology Letters, 27, 1617–1621.CrossRefGoogle Scholar
  21. 21.
    Liu, Y. (1995). Colloids and Surfaces B, 5, 213.CrossRefGoogle Scholar
  22. 22.
    Fletcher, M. (1977). Canadian Journal of Microbiology, 23, 1–6.CrossRefGoogle Scholar
  23. 23.
    Bellon-Fontaine, M. N., & Cerf, O. (1991). Industrial Agricultural Alignment, 108, 13–17.Google Scholar
  24. 24.
    Bryers, J., & Characklis, W. (1981). Water Research, 15, 191–483.CrossRefGoogle Scholar
  25. 25.
    Belkhadir, R. (1986), Ph.D. thesis, Institut National des Sciences Appliques de Toulouse.Google Scholar
  26. 26.
    Brányik, T., Vicente, A. A., Oliveira, R., & Teixeira, J. A. (2004). Biotechnology and Bioengineering, 88, 84–93.CrossRefGoogle Scholar
  27. 27.
    Kosaric, N., & Blaszczyk, R. (1990). Wastewater treatment by immobilized cells. Boca Raton: CRC Press.Google Scholar
  28. 28.
    Yu, J., Yue, G., Zhong, J., Zhang, X., & Tan, T. (2010). Renewable Energy, 35, 1130–1134.CrossRefGoogle Scholar
  29. 29.
    Doyle, R.J. & Rosenberg, M. (1990). Washington, DC: American Society for Microbiology Google Scholar
  30. 30.
    Capizzi, S., & Schwartzbrod, J. (2001). Colloids and Surfaces B, 22, 99–105.CrossRefGoogle Scholar
  31. 31.
    Zgura, I., Beica, T., Mitrofan, I. L., Mateias, C. G., Pirvu, D., & Patrascu, I. (2010). Digestive Journal Nanomater Biosciences, 5, 749–755.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.IBB-Institute for Biotechnology and Bioengineering, Center of Biological EngineeringUniversity of MinhoBragaPortugal

Personalised recommendations