Applied Biochemistry and Biotechnology

, Volume 169, Issue 6, pp 1774–1789

RNA Interference—A Silent but an Efficient Therapeutic Tool

  • Puthucode Venkatakrishnan Ramachandran
  • Savarimuthu Ignacimuthu


RNA interference (RNAi) is an evolutionary conserved gene regulation pathway that has emerged as an important discovery in the field of molecular biology. One of the important advantages of RNAi in therapy is that it brings about efficient downregulation of gene expression by targeting complementary transcripts in comparison with other antisense-based techniques. RNAi can be can be achieved by introducing chemically synthesized small interfering RNAs (siRNAs) into a cell system. A more stable knockdown effect can be brought about by the use of plasmid or viral vectors encoding the siRNA. RNAi has been used in reverse genetics to understand the function of specific genes and also as a therapeutic tool in treating human diseases. This review provides a brief insight into the therapeutic applications of RNAi against debilitating diseases.


RNAi siRNA shRNA miRNA Cancer Ocular diseases Cardiovascular diseases Diabetes mellitus Viral diseases Gene silencing Therapeutic tool 


  1. 1.
    Hamilton, A. J., & Baulcombe, D. C. (1999). A species of small antisense RNA in post transcriptional gene silencing in plants. Science, 286, 950–952.CrossRefGoogle Scholar
  2. 2.
    Zamore, P. D., Tuschl, T., Sharp, P. A., & Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101, 25–33.CrossRefGoogle Scholar
  3. 3.
    Bernstein, E., Caudy, A. A., Hammond, S. M., & Hannon, G. J. (2001). Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409, 363–366.CrossRefGoogle Scholar
  4. 4.
    Elbashir, S. M., Lendeckel, W., & Tuschl, T. (2001). RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes & Development, 15, 188–200.CrossRefGoogle Scholar
  5. 5.
    Sawh, A. N., & Duchaine, T. F. (2012). Turning Dicer on its head. Nature Structural and Molecular Biology, 19, 365–366.CrossRefGoogle Scholar
  6. 6.
    Collins, R., & Cheng, X. (2005). Structural domains in RNAi. FEBS Letters, 579, 5841–5849.CrossRefGoogle Scholar
  7. 7.
    Nykanen, A., Haley, B., & Zamore, P. D. (2001). ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell, 107, 309–321.CrossRefGoogle Scholar
  8. 8.
    Khvorova, A., Reynolds, A., & Jayasena, S. D. (2003). Functional siRNAs and miRNAs exhibit strand bias. Cell, 115, 209–216.CrossRefGoogle Scholar
  9. 9.
    Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses and RNA silencing. Science, 296, 1270–1273.CrossRefGoogle Scholar
  10. 10.
    Kwak, P. B., & Tomari, Y. (2012). The N domain of Argonaute drives duplex unwinding during RISC assembly. Nature Structural and Molecular Biology, 19, 145–152.CrossRefGoogle Scholar
  11. 11.
    Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123, 607–620.CrossRefGoogle Scholar
  12. 12.
    Rand, T. A., Petersen, S., Du, F., & Wang, X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 123, 621–629.CrossRefGoogle Scholar
  13. 13.
    Czech, B., & Hannon, G. J. (2011). Small RNA sorting: matchmaking for Argonautes. Nature Reviews Genetics, 12, 19–31.CrossRefGoogle Scholar
  14. 14.
    Ghildiyal, M., & Zamore, P. D. (2009). Small silencing RNAs: an expanding universe. Nature Reviews Genetics, 10, 94–108.CrossRefGoogle Scholar
  15. 15.
    Paul, C. P., Good, P. D., Winer, I., & Engelke, D. R. (2002). Effective expression of small interfering RNA in human cells. Nature Biotechnology, 20, 505–508.CrossRefGoogle Scholar
  16. 16.
    Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science, 296, 550–553.CrossRefGoogle Scholar
  17. 17.
    Kawasaki, H., & Taira, K. (2003). Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells. Nucleic Acids Research, 31, 700–707.CrossRefGoogle Scholar
  18. 18.
    Borchert, G. M., Lanier, W., & Davidson, B. L. (2006). RNA polymerase III transcribes human microRNAs. Nature Structural and Molecular Biology, 13, 1097–1101.CrossRefGoogle Scholar
  19. 19.
    Monteys, A. M., Spengler, R. M., Wan, J., Tecedor, L., Lennox, K. A., Xing, Y., & Davidson, B. L. (2010). Structure and activity of putative intronic miRNA promoters. RNA, 16, 495–505.CrossRefGoogle Scholar
  20. 20.
    Ozsolak, F., Poling, L. L., Wang, Z., Liu, H., Liu, X. S., Roeder, R. G., Zhang, X., Song, J. S., & Fisher, D. E. (2008). Chromatin structure analyses identify miRNA promoters. Genes & Development, 22, 3172–3183.CrossRefGoogle Scholar
  21. 21.
    Zeng, Y., Yi, R., & Cullen, B. (2005). Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO Journal, 24, 138–148.CrossRefGoogle Scholar
  22. 22.
    Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., & Kim, V. N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425, 415–419.CrossRefGoogle Scholar
  23. 23.
    Gregory, R. I., Yan, K. P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., & Shiekhattar, R. (2004). The microprocessor complex mediates the genesis of microRNAs. Nature, 432, 235–240.CrossRefGoogle Scholar
  24. 24.
    Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., & Kutay, U. (2004). Nuclear export of microRNA precursors. Science, 303, 95–98.CrossRefGoogle Scholar
  25. 25.
    Yi, R., Qin, Y., Macara, I. G., & Cullen, B. R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes & Development, 17, 3011–3016.CrossRefGoogle Scholar
  26. 26.
    Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., & Rådmark, O. (2002). Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO Journal, 21, 5864–5874.CrossRefGoogle Scholar
  27. 27.
    Förstemann, K., Tomari, Y., Du, T., Vagin, V. V., Denli, A. M., Bratu, D. P., Klattenhoff, C., Theurkauf, W. E., & Zamore, P. D. (2005). Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biology, 3, 1–15.CrossRefGoogle Scholar
  28. 28.
    Hafner, M., Ascano, M., Jr., & Tuschl, T. (2011). New insights in the mechanism of microRNA-mediated target repression. Nature Structural and Molecular Biology, 18, 1181–1182.CrossRefGoogle Scholar
  29. 29.
    Kiriakidou, M., Tan, G. S., Lamprinaki, S., De Planell-Saguer, M., Nelson, P. T., & Mourelatos, Z. (2007). An mRNA m7G cap bindinglike motif within human Ago2 represses translation. Cell, 129, 1141–1151.CrossRefGoogle Scholar
  30. 30.
    Chendrimada, T. P., Finn, K. J., Ji, X., Baillat, D., Gregory, R. I., Liebhaber, S. A., Pasquinelli, A. E., & Shiekhattar, R. (2007). MicroRNA silencing through RISC recruitment of eIF6. Nature, 447, 823–828.CrossRefGoogle Scholar
  31. 31.
    Sorensen, D. R., Leirdal, M., & Sioud, M. (2003). Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal of Molecular Biology, 327, 761–766.CrossRefGoogle Scholar
  32. 32.
    Sioud, M., & Sorensen, D. R. (2003). Cationic liposome-mediated delivery of siRNAs in adult mice. Biochemical and Biophysical Research Communications, 312, 1220–1225.CrossRefGoogle Scholar
  33. 33.
    Hamidreza, M., Abadi, A., Landry, B., Sun, C., Tang, T., & Uluda, H. (2012). Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials, 33, 2546–2569.CrossRefGoogle Scholar
  34. 34.
    Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R. K., Racie, T., Rajeev, K. G., Röhl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., & Vornlocher, H. P. (2004). Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 432, 173–178.CrossRefGoogle Scholar
  35. 35.
    Song, E., Lee, S. K., Wang, J., Ince, N., Ouyang, N., Min, J., Chen, J., Shankar, P., & Lieberman, J. (2003). RNA interference targeting Fas protects mice from fulminant hepatitis. Nature Medicine, 9, 347–351.CrossRefGoogle Scholar
  36. 36.
    Van den Boorn, J. G., Schlee, M., Coch, C., & Hartmann, G. (2011). SiRNA delivery with exosome nanoparticles. Nature Biotechnology, 29, 325–326.CrossRefGoogle Scholar
  37. 37.
    Kesharwani, P., Gajbhiye, V., & Jain, N. K. (2012). A review of nanocarriers for the delivery of small interfering RNA. Biomaterials, 33, 7138–7150.CrossRefGoogle Scholar
  38. 38.
    Zhou, J., & Rossi, J. J. (2010). Aptamer-targeted cell-specific RNA interference. Silence, 4, 1–10.Google Scholar
  39. 39.
    McNamara, J. O. I. I., Andrechek, E. R., Wang, Y., Viles, K. D., Rempel, R. E., Gilboa, E., Sullenger, B. A., & Giangrande, P. H. (2006). Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nature Biotechnology, 24, 1005–1015.CrossRefGoogle Scholar
  40. 40.
    Monaghan, M., & Pandit, A. (2011). RNA interference therapy via functionalized scaffolds. Advanced Drug Delivery Reviews, 63, 197–208.CrossRefGoogle Scholar
  41. 41.
    Kulkarni, M., Greiser, U., O'Brien, T., & Pandit, A. (2010). Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends in Biotechnology, 28, 28–36.CrossRefGoogle Scholar
  42. 42.
    De Laporte, L., & Shea, L. D. (2007). Matrices and scaffolds for DNA delivery in tissue engineering. Advanced Drug Delivery Reviews, 59, 292–307.CrossRefGoogle Scholar
  43. 43.
    O'Rorke, S., Keeney, M., & Pandit, A. (2010). Non-viral polyplexes: scaffold mediated delivery for gene therapy. Progress in Polymer Science, 35, 441–458.CrossRefGoogle Scholar
  44. 44.
    Paddison, P. J., Caudy, A. A., Bernstein, E., Hannon, G. J., & Conklin, D. S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes & Development, 16, 948–958.CrossRefGoogle Scholar
  45. 45.
    Lee, N. S., Dohjima, T., Bauer, G., Li, H., Li, M. J., Ehsani, A., Salvaterra, P., & Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnology, 20, 500–505.Google Scholar
  46. 46.
    Sui, G., Soohoo, C., el Affar, B., Gay, F., Shi, Y., Forrester, W. C., & Shi, Y. (2002). A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 99, 5515–5520.CrossRefGoogle Scholar
  47. 47.
    Miyagishi, M., & Taira, K. (2002). U6 promoter driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells. Nature Biotechnology, 20, 497–500.CrossRefGoogle Scholar
  48. 48.
    Wang, S., & El-Deiry, W. S. (2004). Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-fluorouracil. Cancer Research, 64, 6666–6672.CrossRefGoogle Scholar
  49. 49.
    Gupta, S., Schoer, R. A., Egan, J. E., Hannon, G. J., & Mittal, V. (2004). Inducible, reversible and stable RNA interference in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 101, 1927–1932.CrossRefGoogle Scholar
  50. 50.
    Xia, H., Mao, Q., Paulson, H. L., & Davidson, B. L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nature Biotechnology, 20, 1006–1010.CrossRefGoogle Scholar
  51. 51.
    Chung, K. H., Hart, C. C., Al-Bassam, S., Avery, A., Taylor, J., Patel, P. D., Vojtek, A. B., & Turner, D. L. (2006). Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Research, 34, e53.CrossRefGoogle Scholar
  52. 52.
    Xia, X. G., Zhou, H., & Xu, Z. (2006). Multiple shRNAs expressed by an inducible pol II promoter can knock down the expression of multiple target genes. Biotechniques, 41, 64–68.CrossRefGoogle Scholar
  53. 53.
    Sun, D., Melegari, M., Sridhar, S., Rogler, C. E., & Zhu, L. (2006). Multi-miRNA hairpin method that improves gene knockdown efficiency and provides linked multi-gene knockdown. Biotechniques, 41, 59–63.CrossRefGoogle Scholar
  54. 54.
    Hall, K., Blair Zajdel, M. E., & Blair, G. E. (2010). Unity and diversity in the human adenoviruses: exploiting alternative entry pathways for gene therapy. Biochemical Journal, 431, 321–336.Google Scholar
  55. 55.
    Li, H., Fu, X., Chen, Y., Hong, Y., Tan, Y., Cao, H., Wu, M., & Wang, H. (2005). Use of adenovirus-delivered siRNA to target oncoprotein p28GANK in hepatocellular carcinoma. Gastroenterology, 128, 2029–2041.CrossRefGoogle Scholar
  56. 56.
    Osada, H., Tatematsu, Y., Yatabe, Y., Horio, Y., & Takahashi, T. (2005). ASH1 gene is a specific therapeutic target for lung cancers with neuroendocrine features. Cancer Research, 65, 10680–10685.CrossRefGoogle Scholar
  57. 57.
    Ragozin, S., Niemeier, A., Laatsch, A., Loeffler, B., Merkel, M., Beisiegel, U., & Heeren, J. (2005). Knockdown of hepatic ABCA1 by RNA interference decreases plasma HDL cholesterol levels and influences postprandial lipemia in mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1433–1438.CrossRefGoogle Scholar
  58. 58.
    Schaser, T., Wrede, C., Duerner, L., Sliva, K., Cichutek, K., Schnierle, B., & Buchholz, C. J. (2011). RNAi-mediated gene silencing in tumour tissue using replication-competent retroviral vectors. Gene Therapy, 18, 953–960.CrossRefGoogle Scholar
  59. 59.
    Matrai, J., Chuah, M. K., & VandenDriessche, T. (2010). Recent advances in lentiviral vector development and applications. Molecular Therapy, 18, 477–490.CrossRefGoogle Scholar
  60. 60.
    Dittgen, T., Nimmerjahn, A., Komai, S., Licznerski, P., Waters, J., Margrie, T. W., Helmchen, F., Denk, W., Brecht, M., & Osten, P. (2004). Lentivirus-based genetic manipulations of cortical neurons and their optical and electrophysiological monitoring in vivo. Proceedings of the National Academy of Sciences of the United States of America, 101, 18206–18211.CrossRefGoogle Scholar
  61. 61.
    Bahi, A., Boyer, F., Kolira, M., & Dreyer, J. L. (2005). In vivo gene silencing of CD81 by lentiviral expression of small interference RNAs suppresses cocaine-induced behaviour. Journal of Neurochemistry, 92, 1243–1255.CrossRefGoogle Scholar
  62. 62.
    Singer, O., Marr, R. A., Rockenstein, E., Crews, L., Coufal, N. G., Gage, F. H., Verma, I. M., & Masliah, E. (2005). Targeting BACE1 with siRNAs ameliorates Alzheimer disease neuropathology in a transgenic model. Nature Neuroscience, 8, 1343–1349.CrossRefGoogle Scholar
  63. 63.
    Heilbronn, R., & Weger, S. (2010). Viral vectors for gene transfer: current status of gene therapeutics. Handbook of Experimental Pharmacology, 197, 143–170.CrossRefGoogle Scholar
  64. 64.
    Grimm, D. (2009). Small silencing RNAs: state-of-the-art. Advanced Drug Delivery Reviews, 61, 672–703.CrossRefGoogle Scholar
  65. 65.
    McCown, T. J. (2005). Adeno-associated virus (AAV) vectors in the CNS. Current Gene Therapy, 5, 333–338.CrossRefGoogle Scholar
  66. 66.
    McLaughlin, J., Cheng, D., Singer, O., Lukacs, R. U., Radu, C. G., Verma, I. M., & Witte, O. N. (2007). Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proceedings of the National Academy of Sciences of the United States of America, 104, 20501–20506.CrossRefGoogle Scholar
  67. 67.
    Radhakrishnan, S., Layden, T., & Gartel, A. (2004). RNA interference as a new strategy against viral hepatitis. Virology, 323, 173–181.CrossRefGoogle Scholar
  68. 68.
    Brummelkamp, T. R., Bernards, R., & Agami, R. (2002). Stable suppression of tumorigenicity by virus mediated RNA interference. Cancer Cell, 2, 243–247.CrossRefGoogle Scholar
  69. 69.
    Yang, G., Thompson, J., Fang, B., & Liu, J. (2003). Silencing of H-ras gene expression by retrovirus-mediated siRNA decreases transformation efficiency and tumour growth in a model of human ovarian cancer. Oncogene, 22, 5694–5701.CrossRefGoogle Scholar
  70. 70.
    Cioca, D., Aoki, Y., & Kiyosawa, K. (2003). RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Therapy, 10, 125–133.CrossRefGoogle Scholar
  71. 71.
    Martinez, L. A., Naguibneva, I., Lehrmann, H., Vervisch, A., Tchénio, T., Lozano, G., & Harel-Bellan, A. (2002). Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proceedings of the National Academy of Sciences of the United States of America, 99, 14849–14854.CrossRefGoogle Scholar
  72. 72.
    Takei, Y., Kadomatsu, K., Yuzawa, Y., Matsuo, S., & Muramatsu, T. (2004). A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Research, 64, 3365–3370.CrossRefGoogle Scholar
  73. 73.
    Hu-Lieskovan, S., Heidel, J. D., Bartlett, D. W., Davis, M. E., & Triche, T. J. (2005). Sequence-specific knockdown of EWS-FLI1 by targeted, non viral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma. Cancer Research, 65, 8984–8992.CrossRefGoogle Scholar
  74. 74.
    Simmons, O., Maples, P. B., Senzer, N., & Nemunaitis, J. (2012). Ewing's sarcoma: development of RNA interference-based therapy for advanced disease. ISRN Oncology, 2012, 1–13.CrossRefGoogle Scholar
  75. 75.
    Cui, Y., Wang, Q., Wang, J. Y., Dong, Y., Luo, C., Hu, G., & Lu, Y. (2012). Knockdown of AKT2 expression by RNA interference inhibits proliferation, enhances apoptosis, and increases chemosensitivity to the anticancer drug VM-26 in U87 glioma cells. Brain Research, 1469, 1–9.CrossRefGoogle Scholar
  76. 76.
    Zhang, Z., Wang, J., Shen, B., Peng, C., & Zheng, M. (2012). The ABCC4 gene is a promising target for pancreatic cancer therapy. Gene, 491, 94–199.Google Scholar
  77. 77.
    Zhou, W., Wang, L., Gou, S., Wang, T. L., Zhang, M., Liu, T., & Wang, C. (2012). ShRNA silencing glycogen synthase kinase-3 beta inhibits tumor growth and angiogenesis in pancreatic cancer. Cancer Letters, 316, 178–186.CrossRefGoogle Scholar
  78. 78.
    Hu, Y., Shen, Y., Baofang, J., Wang, L., Zhang, Z., & Zhang, Y. (2011). Combinational RNAi gene therapy of hepatocellular carcinoma by targeting human EGFR and TERT. European Journal of Pharmaceutical Sciences, 42, 387–391.CrossRefGoogle Scholar
  79. 79.
    Mocellin, S., Costa, R., & Nitti, D. (2006). RNA interference: ready to silence cancer? Journal of Molecular Medicine (Berlin), 84, 4–15.CrossRefGoogle Scholar
  80. 80.
    Wang, Z., Rao, D. D., Senzer, N., & Nemunaitis, J. (2011). RNA interference and cancer therapy. Pharmaceutical Research, 28, 2983–2995.CrossRefGoogle Scholar
  81. 81.
    Joost Haasnoot, P., Cupac, D., & Berkhout, B. (2003). Inhibition of virus replication by RNA interference. Journal of Biomedical Science, 10, 607–616.CrossRefGoogle Scholar
  82. 82.
    McCaffrey, A., Nakai, H., Pandey, K., Huang, Z., Salazar, F., Xu, H., Wieland, S. F., Marion, P. L., & Kay, M. A. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 21, 639–644.CrossRefGoogle Scholar
  83. 83.
    Giladi, H., Ketzinel-Gilad, M., Rivkin, L., Felig, Y., Nussbaum, O., & Galun, E. (2003). Small interfering RNA inhibits hepatitis B virus replication in mice. Molecular Therapy, 8, 767–769.CrossRefGoogle Scholar
  84. 84.
    Klein, C., Bock, C. T., Wedemeyer, H., Wüstefeld, T., Locarnini, S., Dienes, H. P., Kubicka, S., Manns, M. P., & Trautwein, C. (2003). Inhibition of hepatitis B virus replication in vivo by nucleoside analogues and siRNA. Gastroenterology, 125, 9–18.CrossRefGoogle Scholar
  85. 85.
    Shlomai, A., Lubelsky, Y., Har-Noy, O., & Shaul, Y. (2009). The “Trojan horse” model-delivery of anti-HBV small interfering RNAs by a recombinant HBV vector. Biochemical and Biophysical Research Communications, 390, 619–623.CrossRefGoogle Scholar
  86. 86.
    Ge, Q., Filip, L., Bai, A., Nguyen, T., Eisen, H., & Chen, J. (2004). Inhibition of influenza virus production in virus-infected mice by RNA interference. Proceedings of the National Academy of Sciences of the United States of America, 101, 88676–88681.Google Scholar
  87. 87.
    Merl, S., Michaelis, C., Jaschke, B., Vorpahl, M., Seidl, S., & Wessely, R. (2005). Targeting 2A protease by RNA interference attenuates coxsackie viral cytopathogenicity and promotes survival in highly susceptible mice. Circulation, 111, 1583–1592.CrossRefGoogle Scholar
  88. 88.
    Devincenzo, J., Williams, R. L., Wilkinson, T., Cehelsky, J., Nochur, S., Walsh, E., Meyers, R., Gollob, J., & Vaishnaw, A. (2010). A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. PNAS, 107, 8800–8805.CrossRefGoogle Scholar
  89. 89.
    Bitko, V., Musiyenko, A., Shulyayeva, O., & Barik, S. (2005). Inhibition of respiratory viruses by nasally administered siRNA. Nature Medicine, 11, 50–55.CrossRefGoogle Scholar
  90. 90.
    Blight, K. J., Kolykhalov, A. A., & Rice, C. M. (2000). Efficient initiation of HCV RNA replication in cell culture. Science, 290, 1972–1974.CrossRefGoogle Scholar
  91. 91.
    Lohmann, V., Körner, F., Koch, J., Herian, U., Theilmann, L., & Bartenschlager, R. (1999). Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 285, 110–113.CrossRefGoogle Scholar
  92. 92.
    Ikeda, M., Yi, M., Li, K., & Lemon, S. M. (2002). Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. Journal of Virology, 76, 2997–3006.CrossRefGoogle Scholar
  93. 93.
    Krieger, N., Lohmann, V., & Bartenschlager, R. (2001). Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. Journal of Virology, 75, 4614–4624.CrossRefGoogle Scholar
  94. 94.
    Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K., & Bartenschlager, R. (2001). Characterization of cell lines carrying self-replicating hepatitis C virus RNAs. Journal of Virology, 75, 1252–1264.CrossRefGoogle Scholar
  95. 95.
    Kishine, H., Sugiyama, K., Hijikata, M., Kato, N., Takahashi, H., Noshi, T., Nio, Y., Hosaka, M., Miyanari, Y., & Shimotohno, K. (2002). Subgenomic replicon derived from a cell line infected with the hepatitis C virus. Biochemical and Biophysical Research Communications, 293, 993–999.CrossRefGoogle Scholar
  96. 96.
    McCaffrey, A. P., Meuse, L., Pham, T. T., Conklin, D. S., Hannon, G. J., & Kay, M. A. (2002). RNA interference in adult mice. Nature, 418, 38–39.CrossRefGoogle Scholar
  97. 97.
    Wilson, J. A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I. G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S., & Richardson, C. D. (2003). RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 2783–2788.CrossRefGoogle Scholar
  98. 98.
    Coburn, G. A., & Cullen, B. R. (2002). Potent and specific inhibition of human immunodeficiency virus type 1 replication by RNA interference. Journal of Virology, 76, 9225–9331.CrossRefGoogle Scholar
  99. 99.
    Surabhi, R. M., & Gaynor, R. B. (2002). RNA interference directed against viral and cellular targets inhibits human immunodeficiency Virus Type 1 replication. Journal of Virology, 76, 12963–12973.CrossRefGoogle Scholar
  100. 100.
    Novina, C. D., Murray, M. F., Dykxhoorn, D. M., Beresford, P. J., Riess, J., Lee, S. K., Collman, R. G., Lieberman, J., Shankar, P., & Sharp, P. A. (2002). siRNA-directed inhibition of HIV-1 infection. Nature Medicine, 8, 681–686.Google Scholar
  101. 101.
    Park, W. S., Miyano-Kurosaki, N., Hayafune, M., Nakajima, E., Matsuzaki, T., Shimada, F., & Takaku, H. (2002). Prevention of HIV-1 infection in human peripheral blood mononuclear cells by specific RNA interference. Nucleic Acids Research, 30, 4830–4835.CrossRefGoogle Scholar
  102. 102.
    Jacque, J. M., Triques, K., & Stevenson, M. (2002). Modulation of HIV-1 replication by RNA interference. Nature, 418, 435–438.CrossRefGoogle Scholar
  103. 103.
    Martinez, M. A., Gutierrez, A., Armand-Ugon, M., Blanco, J., Parera, M., Gomez, J., Clotet, B., & Esté, J. A. (2002). Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. AIDS, 16, 2385–2390.CrossRefGoogle Scholar
  104. 104.
    Capodici, J., Kariko, K., & Weissman, D. (2002). Inhibition of HIV-1 infection by small interfering RNA-mediated RNA interference. Journal of Immunology, 169, 5196–5201.Google Scholar
  105. 105.
    Banerjea, A., Li, M. J., Bauer, G., Remling, L., Lee, N. S., Rossi, J., & Akkina, R. (2003). Inhibition of HIV-1 by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell derived macrophages. Molecular Therapy, 8, 62–71.CrossRefGoogle Scholar
  106. 106.
    Li, M. J., Bauer, G., Michienzi, A., Yee, J. K., Lee, N. S., Kim, J., Li, S., Castanotto, D., Zaia, J., & Rossi, J. J. (2003). Inhibition of HIV-1 infection by lentiviral vectors expressing Pol III-promoted anti-HIV RNAs. Molecular Therapy, 8, 196–206.CrossRefGoogle Scholar
  107. 107.
    Boden, D., Pusch, O., Lee, F., Tucker, L., & Ramratnam, B. (2003). Human immunodeficiency virus type 1 escape from RNA interference. Journal of Virology, 77, 11531–11535.CrossRefGoogle Scholar
  108. 108.
    Nevot, M., Martrus, G., Clotet, B., & Martínez, M. A. (2011). RNA interference as a tool for exploring HIV-1 robustness. Journal of Molecular Biology, 413, 84–96.CrossRefGoogle Scholar
  109. 109.
    Ng, E. W., & Adamis, A. (2005). Targeting angiogenesis, the underlying disorder in neovascular age-related macular degeneration. Canadian Journal of Ophthalmology, 40, 352–368.Google Scholar
  110. 110.
    Yuan, M. K., Tao, Y., Yu, W. Z., Kai, W., & Jiang, Y. R. (2010). Lentivirus-mediated RNA interference of vascular endothelial growth factor in monkey eyes with iris neovascularisation. Molecular Vision, 16, 1743–1753.Google Scholar
  111. 111.
    Reich, S. J., Fosnot, J., Kuroki, A., Tang, W., Yang, X., Maguire, A. M., Bennett, J., & Tolentino, M. J. (2003). Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Molecular Vision, 9, 210–216.Google Scholar
  112. 112.
    Kim, B., Tang, Q., Biswas, P. S., Xu, J., Schiffelers, R. M., Xie, F. Y., Ansari, A. M., Scaria, P. V., Woodle, M. C., Lu, P., & Rouse, B. T. (2004). Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. American Journal of Pathology, 165, 2177–2185.CrossRefGoogle Scholar
  113. 113.
    Check, E. (2005). A crucial test. Nature Medicine, 11, 243–244.CrossRefGoogle Scholar
  114. 114.
    Kleinman, M. E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J. Z., Albuquerque, R. J., Yamasaki, S., Itaya, M., Pan, Y., Appukuttan, B., Gibbs, D., Yang, Z., Karikó, K., Ambati, B. K., Wilgus, T. A., DiPietro, L. A., Sakurai, E., Zhang, K., Smith, J. R., Taylor, E. W., & Ambati, J. (2008). Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 452, 591–597.CrossRefGoogle Scholar
  115. 115.
    Zwicky, R., Muntener, K., Goldring, M. B., & Baici, A. (2002). Cathepsin B expression and down-regulation by gene silencing and antisense DNA in human chondrocytes. Biochemical Journal, 367, 209–217.CrossRefGoogle Scholar
  116. 116.
    Kovar, H., Ban, J., & Pospisilova, S. (2003). Potentials for RNAi in sarcoma research and therapy: Ewing's sarcoma as a model. Seminars in Cancer Biology, 13, 275–281.CrossRefGoogle Scholar
  117. 117.
    Owen, L. A., & Lessnick, S. L. (2006). Identification of target genes in their native cellular context: an analysis of EWS/FLI in Ewing's sarcoma. Cell Cycle, 5, 2049–2053.CrossRefGoogle Scholar
  118. 118.
    Tomita, T., Takeuchi, E., Tomita, N., Morishita, R., Kaneko, M., Yamamoto, K., Nakase, T., Seki, H., Kato, K., Kaneda, Y., & Ochi, T. (1999). Suppressed severity of collagen-induced arthritis by in vivo transfection of nuclear factor kappa B decoy oligodeoxynucleotides as a gene therapy. Arthritis and Rheumatism, 42, 2532–2542.CrossRefGoogle Scholar
  119. 119.
    Roman-Blas, J. A., & Jimenez, S. A. (2006). NF-κB as a potential therapeutic target in osteoarthritis and rheumatoid arthritis. Osteoarthritis and Cartilage, 14, 839–848.CrossRefGoogle Scholar
  120. 120.
    Schiffelers, R. M., Xu, J., Storm, G., Woodle, M. C., & Scaria, P. V. (2005). Effects of treatment with small interfering RNA on joint inflammation in mice with collagen-induced arthritis. Arthritis and Rheumatism, 52, 1314–1318.CrossRefGoogle Scholar
  121. 121.
    Wang, Y., & Grainger, D. W. (2012). RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Advanced Drug Delivery Reviews, 64, 1341–1357.CrossRefGoogle Scholar
  122. 122.
    Barringhaus, K. G., & Zamore, P. D. (2009). MicroRNAs: regulating a change of heart. Circulation, 119, 2217–2224.CrossRefGoogle Scholar
  123. 123.
    van Rooij, E., Sutherland, L. B., Liu, N., Williams, A. H., McAnally, J., Gerard, R. D., Richardson, J. A., & Olson, E. N. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proceedings of the National Academy of Sciences of the United States of America, 103, 18255–18260.CrossRefGoogle Scholar
  124. 124.
    Xu, T., Zhu, Y., Xiong, Y., Ge, Y. Y., Yun, J. P., & Zhuang, S. M. (2009). MicroRNA-195 suppresses tumorigenicity and regulates G1/S transition of human hepatocellular carcinoma cells. Hepatology, 50, 113–121.CrossRefGoogle Scholar
  125. 125.
    Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., Galuppo, P., Just, S., Rottbauer, W., Frantz, S., Castoldi, M., Soutschek, J., Koteliansky, V., Rosenwald, A., Basson, M. A., Licht, J. D., Pena, J. T., Rouhanifard, S. H., Muckenthaler, M. U., Tuschl, T., Martin, G. R., Bauersachs, J., & Engelhardt, S. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456, 980–984.CrossRefGoogle Scholar
  126. 126.
    Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segnalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V., Hoydal, M., Autore, C., Russo, M. A., Dorn, G. W., Ellingsen, O., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., & Condorelli, G. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13, 613–618.CrossRefGoogle Scholar
  127. 127.
    Sayed, D., Hong, C., Chen, I. Y., Lypowy, J., & Abdellatif, M. (2007). MicroRNAs play an essential role in the development of cardiac hypertrophy. Circulation Research, 100, 416–424.CrossRefGoogle Scholar
  128. 128.
    Yang, B., Lin, H., Xiao, J., Lu, Y., Luo, X., Li, B., Zhang, Y., Xu, C., Bai, Y., Wang, H., Chen, G., & Wang, Z. (2007). The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2. Nature Medicine, 13, 486–491.CrossRefGoogle Scholar
  129. 129.
    Lynn, F. C., Skewes-Cox, P., Kosaka, Y., McManus, M. T., Harfe, B. D., & German, M. S. (2007). MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 56, 2938–2945.CrossRefGoogle Scholar
  130. 130.
    El Ouaamari, A., Baroukh, N., Martens, G. A., Lebrun, P., Pipeleers, D., & Van Obberghen, E. (2008). MiR-375 targets 30-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes, 57, 2708–2717.CrossRefGoogle Scholar
  131. 131.
    Herrera, B. M., Lockstone, H. E., Taylor, J. M., Wills, Q. F., Kaisaki, P. J., Barrett, A., Camps, C., Fernandez, C., Ragoussis, J., Gauguier, D., McCarthy, M. I., & Lindgren, C. M. (2009). MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes. BMC Medical Genomics, 2, 54.CrossRefGoogle Scholar
  132. 132.
    Tang, X., Muniappan, L., Tang, G., & Ozcan, S. (2009). Identification of glucose regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA, 15, 287–293.CrossRefGoogle Scholar
  133. 133.
    Rehman, K. K., Trucco, M., Wang, Z., Xiao, X., & Robbins, P. D. (2008). AAV8- mediated gene transfer of interleukin-4 to endogenous beta-cells prevents the onset of diabetes in NOD mice. Molecular Therapy, 16, 1409–1416.CrossRefGoogle Scholar
  134. 134.
    Yau, W. W. Y., Rujitanaroj, P., Lam, L., & Chew, S. Y. (2012). Directing stem cell fate by controlled RNA interference. Biomaterials, 33, 2608–2628.CrossRefGoogle Scholar
  135. 135.
    Nguyen, Q. D., Schachar, R. A., Nduaka, C. I., Sperling, M., Basile, A. S., Klamerus, K. J., Chi-Burris, K., Yan, E., Paggiarino, D. A., Rosenblatt, I., Khan, A., Aitchison, R., & Erlich, S. S. (2012). Phase 1 dose-escalation study of a siRNA targeting the RTP801 gene in age-related macular degeneration patients. Eye (London, England), 8, 1099–1105.CrossRefGoogle Scholar
  136. 136.
    Ahmed, Z., Kalinski, H., Berry, M., Almasieh, M., Ashush, H., Slager, N., Brafman, A., Spivak, I., Prasad, N., Mett, I., Shalom, E., Alpert, E., Di Polo, A., Feinstein, E., & Logan, A. (2011). Ocular neuroprotection by siRNA targeting caspase-2. Cell Death and Diseases, 6, e173.CrossRefGoogle Scholar
  137. 137.
    Verma, U. N., Surabhi, R. M., Schmaltieg, A., Becerra, C., & Gaynor, R. B. (2003). Small interfering RNAs directed against beta-catenin inhibit the in vitro and in vivo growth of colon cancer cells. Clinical Cancer Research, 4, 1291–1300.Google Scholar
  138. 138.
    Judge, A. D., Robbins, M., Tavakoli, I., Levi, J., Hu, L., Fronda, A., Ambegia, E., McClintock, K., & MacLachlan, I. (2009). Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. The Journal of Clinical Investigation, 119, 661–673.CrossRefGoogle Scholar
  139. 139.
    Rahman, M. A., Amin, A. R., Wang, X., Zuckerman, J. E., Choi, C. H., Zhou, B., Wang, D., Nannapaneni, S., Koenig, L., Chen, Z., Chen, Z. G., Yen, Y., Davis, M. E., & Shin, D. M. (2012). Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. Journal of Controlled Release, 159, 384–392.CrossRefGoogle Scholar
  140. 140.
    Strumberg, D., Schultheis, B., Traugott, U., Vank, C., Santel, A., Keil, O., Giese, K., Kaufmann, J., & Drevs, J. (2012). Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. International Journal of Clinical Pharmacology and Therapeutics, 50, 76–78.Google Scholar
  141. 141.
    Koldehoff, M., & Elmaagacli, A. H. (2009). Therapeutic targeting of gene expression by siRNAs directed against BCR-ABL transcripts in a patient with imatinib-resistant chronic myeloid leukemia. Methods in Molecular Biology, 487, 451–466.CrossRefGoogle Scholar
  142. 142.
    Dannull, J., Lesher, D. T., Holzknecht, R., Qi, W., Hanna, G., Seigler, H., Tyler, D. S., & Pruitt, S. K. (2007). Immunoproteasome down-modulation enhances the ability of dendritic cells to stimulate antitumor immunity. Blood, 110, 4341–4350.CrossRefGoogle Scholar
  143. 143.
    Astor, T. L. (2011). RNA interference, RSV, and lung transplantation: a promising future for siRNA therapeutics. American Journal of Respiratory and Critical Care Medicine, 183, 427–428.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Puthucode Venkatakrishnan Ramachandran
    • 1
  • Savarimuthu Ignacimuthu
    • 1
  1. 1.Entomology Research Institute, Loyola CollegeChennaiIndia

Personalised recommendations