Applied Biochemistry and Biotechnology

, Volume 169, Issue 5, pp 1531–1545 | Cite as

Ethanol Production Using Whole Plant Biomass of Jerusalem Artichoke by Kluyveromyces marxianus CBS1555



Jerusalem artichoke is a low-requirement sugar crop containing cellulose and hemicellulose in the stalk and a high content of inulin in the tuber. However, the lignocellulosic component in Jerusalem artichoke stalk reduces the fermentability of the whole plant for efficient bioethanol production. In this study, Jerusalem artichoke stalk was pretreated sequentially with dilute acid and alkali, and then hydrolyzed enzymatically. During enzymatic hydrolysis, approximately 88 % of the glucan and xylan were converted to glucose and xylose, respectively. Batch and fed-batch simultaneous saccharification and fermentation of both pretreated stalk and tuber by Kluyveromyces marxianus CBS1555 were effectively performed, yielding 29.1 and 70.2 g/L ethanol, respectively. In fed-batch fermentation, ethanol productivity was 0.255 g ethanol per gram of dry Jerusalem artichoke biomass, or 0.361 g ethanol per gram of glucose, with a 0.924 g/L/h ethanol productivity. These results show that combining the tuber and the stalk hydrolysate is a useful strategy for whole biomass utilization in effective bioethanol fermentation from Jerusalem artichoke.


Bioethanol Jerusalem artichoke Stalk Kluyveromyces marxianus Simultaneous saccharification and fermentation 


  1. 1.
    Margaritis, A., & Bajpai, P. (1982). Ethanol production from Jerusalem artichoke tubers (Helianthus tuberosus) using Kluyveromyces marxianus and Saccharomyces rosei. Biotechnology and Bioengineering, 24, 941–953.CrossRefGoogle Scholar
  2. 2.
    Kosarik, M., Cosentino, G. P., & Weiczorek, A. (1984). The Jerusalem artichoke as an agricultural crop. Biomass, 5, 1–36.CrossRefGoogle Scholar
  3. 3.
    Negro, M. J., Ballesteros, I., Manzanares, P., Oliva, J. M., Sáez, F., & Ballesteros, M. (2006). Inulin-containing biomass for ethanol production: carbohydrate extraction and ethanol fermentation. Applied Biochemistry and Biotechnology, 129–132, 922–932.CrossRefGoogle Scholar
  4. 4.
    Bajpai, P., & Margaritis, A. (1982). Ethanol inhibition kinetics of Kluyveromyces marxianus grown on Jerusalem artichoke juice. Applied and Environmental Microbiology, 44, 1325–1329.Google Scholar
  5. 5.
    Margaritis, A., & Bajpai, P. (1982). Continuous ethanol production from Jerusalem artichoke tubers. I. Use of free cells of Kluyveromyces marxianus. Biotechnology and Bioengineering, 24, 1473–1482.CrossRefGoogle Scholar
  6. 6.
    Kim, K., & Hamdy, M. K. (1986). Acid hydrolysis of Jerusalem artichoke for ethanol fermentation. Biotechnology and Bioengineering, 28, 138–141.CrossRefGoogle Scholar
  7. 7.
    Favela-Torres, E., Allais, J. J., & Baratti, J. (1986). Kinetics of batch fermentations for ethanol production with Zymomonas mobilis growing on Jerusalem artichoke juice. Biotechnology and Bioengineering, 28, 850–856.CrossRefGoogle Scholar
  8. 8.
    Rosa, M. F., Correia, I. S., & Novais, J. M. (1988). Improvements in ethanol tolerance of Kluyveromyces fragilis in Jerusalem artichoke juice. Biotechnology and Bioengineering, 31, 705–710.CrossRefGoogle Scholar
  9. 9.
    Szambelan, K., Nowak, J., & Czarnecki, Z. (2004). Use of Zymomonas mobilis and Saccharomyces cerevisiae mixed with Kluyveromyces fragilis for improved ethanol production from Jerusalem artichoke tubers. Biotechnology Letters, 26, 845–848.CrossRefGoogle Scholar
  10. 10.
    Li, D., Dai, J. Y., & Xiu, Z. L. (2010). A novel strategy for integrated utilization of Jerusalem artichoke stalk and tuber for production of 2,3-butanediol by Klebsiella pneumonia. Bioresource Technology, 101, 8342–8347.CrossRefGoogle Scholar
  11. 11.
    Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, 16, 577–583.CrossRefGoogle Scholar
  12. 12.
    Gnansounou, E., & Dauriat, A. (2010). Techno-economic analysis of lignocellulosic ethanol: a review. Bioresource Technology, 101, 4980–4991.CrossRefGoogle Scholar
  13. 13.
    FitzPatrick, M., Champagne, P., Cunningham, M. F., & Whitney, R. A. (2010). A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresource Technology, 101, 8915–8922.CrossRefGoogle Scholar
  14. 14.
    da Costa Sousa, L., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Current Opinion in Biotechnology, 20, 339–347.CrossRefGoogle Scholar
  15. 15.
    Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.CrossRefGoogle Scholar
  16. 16.
    Kim, S., Park, J. M., Seo, J. W., & Kim, C. H. (2012). Sequential acid-/alkali-pretreatment of empty palm fruit bunch fiber. Bioresource Technology, 109, 229–233.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Jeonbuk Branch InstituteKorea Research Institute of Bioscience and BiotechnologyJeongeupSouth Korea

Personalised recommendations