Advertisement

Applied Biochemistry and Biotechnology

, Volume 169, Issue 2, pp 511–525 | Cite as

Potential Probiotic Lactic Acid Bacteria of Human Origin Induce Antiproliferation of Colon Cancer Cells via Synergic Actions in Adhesion to Cancer Cells and Short-Chain Fatty Acid Bioproduction

  • Mongkol Thirabunyanon
  • Penrat Hongwittayakorn
Article

Abstract

The activities and modes of probiotic action of lactic acid bacteria isolated from infant feces were investigated for alternative application in the prevention and biotherapy of colon cancer. From a total of 81 isolates of Gram-positive rod and cocci bacteria obtained from healthy infants, only 15 isolates had the probiotic criteria which included growth inhibition against eight food-borne pathogens, no blood hemolysis, and tolerance to gastrointestinal tract properties such as pH 2.5 and 0.3 % bile salt. Four probiotic bacteria showed antiproliferation of colon cancer cells with the use of MTT and Trypan blue exclusion assay at the rates of 17–35 %. Through comparison of probiotic 16S rRNA sequences, they were identified as Pediococcus pentosaceus FP3, Lactobacillus salivarius FP25, L. salivarius FP35, and Enterococcus faecium FP51. Finding the mechanism of proliferative inhibition of colon cancer cells in this study indicated synergic induction by probiotic bacteria directly adhered to these cancer cells and triggered the bioproduction of short-chain fatty acids, mainly butyric and propionic acids. This study suggested that the use of these probiotics may be suitable as an alternative bioprophylactic and biotherapeutic strategy for colon cancer.

Keywords

Caco-2 Colon cancer Food-borne pathogens Lactic acid bacteria Probiotic Short-chain fatty acids 

Notes

Acknowledgments

This research was financially supported by the National Research Council of Thailand.

References

  1. 1.
    Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., & Gordon, J. I. (2005). Science, 307, 1915–1920.CrossRefGoogle Scholar
  2. 2.
    McFall-Ngai, M. (2007). Nature, 445, 153.CrossRefGoogle Scholar
  3. 3.
    O’Flaherty, S., & Klaenhammer, T. R. (2010). International Dairy Journal, 20, 262–268.CrossRefGoogle Scholar
  4. 4.
    Thirabunyanon, M. (2011). Maejo International Journal of Science and Technology, 5, 108–128.Google Scholar
  5. 5.
    Thirabunyanon, M., & Thongwittaya, Ν. (2012). Research in Veterinary Science, 93, 74–81.CrossRefGoogle Scholar
  6. 6.
    McBain, A. J., & Macfarlane, G. T. (1998). Journal of Medical Microbiology, 47, 407–416.CrossRefGoogle Scholar
  7. 7.
    Rafter, J. (2003). Best Practice & Research Clinical Gastroenterology, 17, 849–859.CrossRefGoogle Scholar
  8. 8.
    Travaglione, S., Fabbri, A., & Fiorentini, C. (2008). Infectious Agents and Cancer., 3, 4.CrossRefGoogle Scholar
  9. 9.
    Commane, D., Hughes, R., Shortt, C., & Rowland, I. (2005). Mutation Research, 591, 276–289.CrossRefGoogle Scholar
  10. 10.
    Ohkawara, S., Furuya, H., Nagashima, K., Asanuma, N., & Hino, T. (2005). The Journal of Nutrition, 135, 2878–8283.Google Scholar
  11. 11.
    Ma, E. L., Choi, Y. J., Choi, J., Pothoulakis, C., Rhee, S. H., & Im, E. (2010). International Journal of Cancer, 127, 780–790.Google Scholar
  12. 12.
    Thirabunyanon, M., Boonprasom, P., & Niamsup, P. (2009). Biotechnology Letters, 31, 571–576.CrossRefGoogle Scholar
  13. 13.
    Millette, M., Dupont, C., Shareck, F., Ruiz, M. T., Archambault, D., & Lacroix, M. (2008). Journal of Applied Microbiology, 104, 269–275.Google Scholar
  14. 14.
    Pridmore, R. D., Pittet, A. C., Praplan, F., & Cavadini, C. (2008). FEMS Microbiology Letters, 283, 210–215.CrossRefGoogle Scholar
  15. 15.
    Verdenelli, M. C., Ghelfi, F., Silvi, S., Orpianesi, C., Cecchini, C., & Cresci, A. (2009). European Journal of Nutrition, 48, 355–363.CrossRefGoogle Scholar
  16. 16.
    Gaudana, S. B., Dhanani, A. S., & Bagchi, T. (2010). British Journal of Nutrition, 103, 1620–1628.CrossRefGoogle Scholar
  17. 17.
    Pennacchia, C., Ercolini, D., Blaiotta, G., Pepe, O., Mauriello, G., & Villani, F. (2004). Meat Science, 67, 309–317.CrossRefGoogle Scholar
  18. 18.
    Ewaschuk, J. B., Walker, J. W., Diaz, H., & Madsen, K. L. (2006). Journal of Nutrition, 136, 1483–1487.Google Scholar
  19. 19.
    Lee, N. K., Park, J. S., Park, E., & Paik, H. D. (2007). Letters in Applied Microbiology, 44, 274–278.CrossRefGoogle Scholar
  20. 20.
    Hussain, M. A., Rouch, D. A., & Britz, M. L. (2009). International Dairy Journal, 19, 12–21.CrossRefGoogle Scholar
  21. 21.
    Jan, G., Belzacq, A. S., Haouzi, D., Rouault, A., Métivier, D., Kroemer, G., & Brenner, C. (2002). Cell Death and Differentiation, 9, 179–188.CrossRefGoogle Scholar
  22. 22.
    Shmuely, H., Passaro, D., Figer, A., Niv, Y., Pitlik, S., Samra, Z., Koren, R., & Yahav, J. (2001). The American Journal of Gastroenterology, 96, 3406–3410.CrossRefGoogle Scholar
  23. 23.
    Maragkoudakis, P. A., Mountzouris, K. C., Psyrras, D., Cremonese, S., Fischer, J., Cantor, M. D., & Tsakalidou, E. (2009). International Journal of Food Microbiology, 130, 219–226.CrossRefGoogle Scholar
  24. 24.
    Zoumpopoulou, G., Foligne, B., Christodoulou, K., Grangette, C., Pot, B., & Tsakalidou, E. (2008). International Journal of Food Microbiology, 121, 18–26.CrossRefGoogle Scholar
  25. 25.
    Fotiadis, C. I., Stoidis, C. N., Spyropoulos, B. G., & Zografos, E. D. (2008). World Journal of Gastroenterology, 14, 6453–6457.CrossRefGoogle Scholar
  26. 26.
    Salmeron, I., Fuciños, P., Charalampopoulos, D., & Pandiella, S. S. (2009). Food Chemistry, 117, 265–271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Division of Biotechnology, Faculty of ScienceMaejo UniversityChiang MaiThailand

Personalised recommendations