Applied Biochemistry and Biotechnology

, Volume 169, Issue 1, pp 134–144 | Cite as

Molecular Cloning, Tissue Expression, and Analysis with Genome DNA Methylation of Porcine LSD1 Gene

Article
  • 539 Downloads

Abstract

Lysine-specific demethylase 1 (LSD1) functioned as a demethyl methylase gene, underlying a wide range of biological processes, including cancer, cell apoptosis, differentiation, and development. To further understand the functions of the porcine LSD1 gene, we first obtained cDNA sequence of porcine LSD1 gene, using in silico cloning method. We further found that the porcine LSD1 gene has two transcripts, in which cDNA sequences are 2,716 and 2,656 bp, ORF are 2,622 and 2,562 bp, respectively. Then, RT-PCR analysis showed that the LSD1 gene is expressed in various tissues and relatively higher in the tissues of ovary, kidney, and spleen. Besides, the LSD1 gene was expressed higher in the growth nonage and peaked at 3 days in muscle tissue. Meanwhile, the expression of two transcript variants of LSD1 gene presented the same change trend. Besides, the level of DNA methylation was approximately fourfold higher in a 3-day muscle than in an old pig (180 days), significantly positive related to the gene expression of LSD1 (R = 0.9362, P < 0.05), and declined with growing age. Cloning, expression pattern, and analysis with genome DNA methylation of porcine LSD1 gene laid a foundation to clarify the molecular mechanisms of porcine growth and development and also for further work on animal breeding.

Keywords

LSD1 gene Cloning Expression DNA methylation Porcine 

References

  1. 1.
    Adamo, A., Sesé, B., Boue, S., Castaño, J., Paramonov, I., Barrero, M. J., & Belmonte, J. C. I. (2011). Nature Cell Biology, 13, 652–659.CrossRefGoogle Scholar
  2. 2.
    Andres, M. E., Burger, C., Peral-Rubio, M. J., Battaglioli, E., Anderson, M. E., Grimes, J., Dallman, J., Ballas, N., & Mandel, G. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 9873–9878.CrossRefGoogle Scholar
  3. 3.
    Choi, J., Jang, H., Kim, H., Kim, S. T., Cho, E. J., & Youn, H. D. (2010). Biochemical and Biophysical Research Communications, 401, 327–332.CrossRefGoogle Scholar
  4. 4.
    Fürst, D. O., Osborn, M., & Weber, K. (1989). The Journal of Cell Biology, 109, 517–527.CrossRefGoogle Scholar
  5. 5.
    Feng, C. Z., Zhu, X. J., Dai, Z. M., Liu, F. Q., Xiang, J. H., & Yang, W. J. (2007). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 147, 191–198.CrossRefGoogle Scholar
  6. 6.
    Forneris, F., Binda, C., Vanoni, M. A., Mattevi, A., & Battaglioli, E. (2005). FEBS Letters, 579, 2203–2207.CrossRefGoogle Scholar
  7. 7.
    Graveley, B. R. (2001). Trends in Genetics, 17, 100–107.CrossRefGoogle Scholar
  8. 8.
    Hakimi, M. A., Bochar, D. A., Chenoweth, J., Lane, W. S., Mandel, G., & Shiekhattar, R. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 7420–7425.CrossRefGoogle Scholar
  9. 9.
    Hatakeyama, D., & Mueller, U. (2008). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 151, 457.CrossRefGoogle Scholar
  10. 10.
    Huminiecki, L., & Bicknell, R. (2000). In silico cloning of novel endothelial-specific genes. Genome Research, 10, 1796–1806.CrossRefGoogle Scholar
  11. 11.
    Jiang, Y., Li, N., & Wu, C. (1999). Journal of Agricultural Biotechnology, 7, 201–204.Google Scholar
  12. 12.
    Lim, S., Janzer, A., Becker, A., Zimmer, A., Schüle, R., Buettner, R., & Kirfel, J. (2010). Carcinogenesis, 31, 512–520.CrossRefGoogle Scholar
  13. 13.
    Metzger, E., Wissmann, M., Yin, N., Muller, J. M., Schneider, R., Peters, A. H., Gunther, T., Buettner, R., & Schule, R. (2005). Nature, 437, 436–439.Google Scholar
  14. 14.
    Razin, A., & Riggs, A. D. (1980). Science, 210, 604–610.CrossRefGoogle Scholar
  15. 15.
    Ren, F., Shen, S. S., Li, X. B., & Yao, S. X. (2012). Advanced Materials Research, 466–467, 3–7.CrossRefGoogle Scholar
  16. 16.
    Richardson, B. (2003). Ageing Research Reviews, 2, 245–261.CrossRefGoogle Scholar
  17. 17.
    Schenk, T., Chen, W. C., Göllner, S., Howell, L., Jin, L., Hebestreit, K., Klein, H. U., Popescu, A. C., Burnett, A., & Mills, K. (2012). Nature Medicine, 18, 605–611.CrossRefGoogle Scholar
  18. 18.
    Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A., & Casero, R. A. (2004). Cell, 119, 941–953.CrossRefGoogle Scholar
  19. 19.
    Shi, Y., Sawada, J., Sui, G., Affar el, B., Whetstine, J. R., Lan, F., Ogawa, H., Luke, M. P., Nakatani, Y., & Shi, Y. (2003). Nature, 422:6933, 735–738.Google Scholar
  20. 20.
    Wang, J., Hevi, S., Kurash, J. K., Lei, H., Gay, F., Bajko, J., Su, H., Sun, W., Chang, H., & Xu, G. (2008). Nature Genetics, 41, 125–129.CrossRefGoogle Scholar
  21. 21.
    Wang, Y., Zhang, H., Chen, Y., Sun, Y., Yang, F., Yu, W., Liang, J., Sun, L., Yang, X., & Shi, L. (2009). Cell, 138, 660–672.CrossRefGoogle Scholar
  22. 22.
    Whyte, W. A., Bilodeau, S., Orlando, D. A., Hoke, H. A., Frampton, G. M., Foster, C. T., Cowley, S. M., & Young, R. A. (2012). Nature, 482, 221–225.Google Scholar
  23. 23.
    Williams, A. H., Liu, N., Van Rooij, E., & Olson, E. N. (2009). Current Opinion in Cell Biology, 21, 461–469.CrossRefGoogle Scholar
  24. 24.
    Zhou, Z., & Sun, K. (2006). Chinese Journal of Medical Genetics, 23, 177–180.Google Scholar
  25. 25.
    Zibetti, C., Adamo, A., Binda, C., Forneris, F., Toffolo, E., Verpelli, C., Ginelli, E., Mattevi, A., Sala, C., & Battaglioli, E. (2010). The Journal of Neuroscience, 30, 2521–2532.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jin Chai
    • 1
  • Lina Liu
    • 1
  • Qi Xiong
    • 2
  • Chen Chen
    • 1
  • Yongdong Peng
    • 1
  • Wei Jin
    • 1
  • Rong Zheng
    • 1
  • Jian Peng
    • 3
  • Siwen Jiang
    • 1
  1. 1.Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.Hubei Key Laboratory of Amimal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and VeterinaryHubei Academy of Agricultural ScienceWuhanChina
  3. 3.Department of Animal Nutrition and Feed Science, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina

Personalised recommendations