Applied Biochemistry and Biotechnology

, Volume 169, Issue 1, pp 145–158 | Cite as

Kinetics and Computational Docking Studies on the Inhibition of Tyrosinase Induced by Oxymatrine

  • Xiao-Xia Liu
  • Shi-Qing Sun
  • Yu-Jie Wang
  • Wei Xu
  • Yi-Fang Wang
  • Daeui Park
  • Hai-Meng Zhou
  • Hong-Yan Han
Article

Abstract

A combination of enzymatic inhibition kinetics and computational prediction was employed to search for an effective inhibitor of tyrosinase. We found that oxymatrine significantly inhibited tyrosinase, and that this reaction was not accompanied by detectable conformational changes. Kinetic analysis showed that oxymatrine reversibly inhibited tyrosinase in a mixed-type manner. Measurements of intrinsic and ANS-binding fluorescences showed that oxymatrine did not induce any conspicuous changes in the tertiary structure. We also conducted a docking simulation between tyrosinase and oxymatrine using two docking programs, Dock6.3 and AutoDock4.2 (binding energy was −118.81 kcal/mol for Dock6 and −8.04 kcal/mol for AutoDock4). The results also suggested that oxymatrine interacts mostly with the residues of CYS83 and HIS263 in the active site of tyrosinase. This strategy of predicting tyrosinase inhibition by simulation of docking coupling with kinetics may prove useful in screening for potential tyrosinase inhibitors. Knowledge of tyrosinase inhibition can provide medical, cosmetic, and agricultural applications. Our study suggests that oxymatrine is an important agent for various applications related to pigment formation.

Keywords

Oxymatrine Tyrosinase Inhibitor Kinetics Computational docking 

Abbreviations

DOPA

3,4-Dihydroxyphenylalanine

ANS

1-Anilinonaphthalene-8-sulfonate

Notes

Acknowledgments

Dr. Xiao-Xia Liu was supported by the National Natural Science Foundation of China (No. 31100053) and Zhejiang Science & Technology Innovation Team Project (2012R10012-08). Dr. Hong-Yan Han was supported by the National Natural Science Foundation of China (No. 81071306). Dr. Hai-Meng Zhou was supported by a grant from the 624 project supported by Zhejiang leading team of Science & Technology innovation (Team No. 2010R50019).

References

  1. 1.
    Ho, J. W., Ngan Hon, P. L., & Chim, W. O. (2009). Anti-Cancer Agents in Medicinal Chemistry, 9, 823–826.CrossRefGoogle Scholar
  2. 2.
    Bi, W., Tian, M., & Row, K. H. (2012). Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 880, 108–113.CrossRefGoogle Scholar
  3. 3.
    Wang, H., Lu, Y., Chen, J., Li, J., & Liu, S. (2012). Journal of Pharmaceutical and Biomedical Analysis, 58, 146–151.CrossRefGoogle Scholar
  4. 4.
    Ling, Q., Xu, X., Wei, X., Wang, W., Zhou, B., Wang, B., & Zheng, S. (2011). Journal of Experimental & Clinical Cancer Research, 30, 66.CrossRefGoogle Scholar
  5. 5.
    Hu, S. T., Tang, Y., Shen, Y. F., Ao, H. H., Bai, J., Wang, Y. L., & Yang, Y. J. (2011). Journal of Physiological Sciences, 61, 363–372.CrossRefGoogle Scholar
  6. 6.
    Zhang, Z., Wang, Y., Dong, M., Cui, J., Rong, D., & Dong, Q. (2012). Inflammation, 35(2): 605–613.Google Scholar
  7. 7.
    Chen, Y., Wang, D., Hu, Y., Guo, Z., Wang, J., Zhao, X., Fan, Y., Guo, L., Yang, S., Sai, F., & Xing, Y. (2010). International Journal of Biological Macromolecules, 46, 425–428.CrossRefGoogle Scholar
  8. 8.
    Orio, M., Bochot, C., Dubois, C., Gellon, G., Hardré, R., Jamet, H., Luneau, D., Philouze, C., Réglier, M., Serratrice, G., & Belle, C. (2011). Chemistry, 17, 13482–13494.CrossRefGoogle Scholar
  9. 9.
    Tada, M., Kohno, M., Kasai, S., & Niwano, Y. (2010). Journal of Clinical Biochemistry and Nutrition, 47, 162–166.CrossRefGoogle Scholar
  10. 10.
    Peyroux, E., Ghattas, W., Hardré, R., Giorgi, M., Faure, B., Simaan, A. J., Belle, C., & Réglier, M. (2009). Inorganic Chemistry, 48, 10874–10876.CrossRefGoogle Scholar
  11. 11.
    Yamaguchi, Y., & Hearing, V. J. (2009). Biofactors, 35, 193–199.CrossRefGoogle Scholar
  12. 12.
    Seo, S. Y., Sharma, V. K., & Sharma, N. (2003). Journal of Agricultural and Food Chemistry, 51, 2837–2853.CrossRefGoogle Scholar
  13. 13.
    Sugumaran, M. (2002). Pigment Cell Research, 15, 2–9.CrossRefGoogle Scholar
  14. 14.
    Sato, S., & Yamamoto, H. (2001). Pigment Cell Research, 14, 428–436.CrossRefGoogle Scholar
  15. 15.
    Kim, Y. J., & Uyama, H. (2005). Cellular and Molecular Life Sciences, 62, 1707–1723.CrossRefGoogle Scholar
  16. 16.
    Pan, Z. Z., Li, H. L., Yu, X. J., Zuo, Q. X., Zheng, G. X., Shi, Y., Liu, X., Lin, Y. M., Liang, G., Wang, Q., & Chen, Q. X. (2011). Journal of Agricultural and Food Chemistry, 59, 6645–6649.CrossRefGoogle Scholar
  17. 17.
    Rescigno, A., Sollai, F., Pisu, B., Rinaldi, A., & Sanjust, E. (2002). Journal of Enzyme Inhibition and Medicinal Chemistry, 17, 207–218.CrossRefGoogle Scholar
  18. 18.
    Parvez, S., Kang, M., Chung, H. S., & Bae, H. (2007). Phytotherapy Research, 21, 805–816.CrossRefGoogle Scholar
  19. 19.
    Rolff, M., Schottenheim, J., Decker, H., & Tuczek, F. (2011). Chemical Society Reviews, 40, 4077–4098.CrossRefGoogle Scholar
  20. 20.
    Olivares, C., & Solano, F. (2009). Pigment Cell & Melanoma Research, 22, 750–760.CrossRefGoogle Scholar
  21. 21.
    Ismaya, W. T., Rozeboom, H. J., Weijn, A., Mes, J. J., Fusetti, F., Wichers, H. J., & Dijkstra, B. W. (2011). Biochemistry, 50, 5477–5486.CrossRefGoogle Scholar
  22. 22.
    Sendovski, M., Kanteev, M., Shuster Ben-Yosef, V., Adir, N., & Fishman, A. (2011). Journal of Molecular Biology, 405, 227–237.CrossRefGoogle Scholar
  23. 23.
    Sendovski, M., Kanteev, M., Shuster Ben-Yosef, V., Adir, N., & Fishman, A. (2010). Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 66, 1101–1103.CrossRefGoogle Scholar
  24. 24.
    Matoba, Y., Bando, N., Oda, K., Noda, M., Higashikawa, F., Kumagai, T., & Sugiyama, M. (2011). Journal of Biological Chemistry, 286, 30219–30231.CrossRefGoogle Scholar
  25. 25.
    Yin, S. J., Si, Y. X., Chen, Y. F., Qian, G. Y., Lü, Z. R., Oh, S., Lee, J., Lee, S., Yang, J. M., Lee, D. Y., & Park, Y. D. (2011). The Protein Journal, 30, 273–280.CrossRefGoogle Scholar
  26. 26.
    Si, Y. X., Yin, S. J., Park, D., Chung, H. Y., Yan, L., Lü, Z. R., Zhou, H. M., Yang, J. M., Qian, G. Y., & Park, Y. D. (2011). International Journal of Biological Macromolecules, 48, 700–704.CrossRefGoogle Scholar
  27. 27.
    Lü, Z. R., Shi, L., Wang, J., Park, D., Bhak, J., Yang, J. M., Park, Y. D., Zhou, H. W., & Zou, F. (2010). Applied Biochemistry and Biotechnology, 160, 1896–1908.CrossRefGoogle Scholar
  28. 28.
    Gou, L., Lü, Z. R., Park, D., Oh, S. H., Shi, L., Park, S. J., Bhak, J., Park, Y. D., Ren, Z. L., & Zou, F. (2008). Journal of Biomolecular Structure and Dynamics, 26, 395–402.CrossRefGoogle Scholar
  29. 29.
    Yin, S. J., Si, Y. X., Wang, Z. J., Wang, S. F., Oh, S., Lee, S., Sim, S. M., Yang, J. M., Qian, G. Y., Lee, J., & Park, Y. D. (2011). Journal of Biomolecular Structure and Dynamics, 29, 463–470.CrossRefGoogle Scholar
  30. 30.
    Xie, M. X., Xu, X. Y., & Wang, Y. D. (2005). Biochimica et Biophysica Acta, 1724, 215–224.CrossRefGoogle Scholar
  31. 31.
    Wolber, G., & Langer, T. (2005). Journal of Chemical Information and Modeling, 45, 160–169.CrossRefGoogle Scholar
  32. 32.
    Bai, G. Y., Wang, D. Q., Ye, C. H., & Liu, M. L. (2002). Applied Magnetic Resonance, 23, 113–121.CrossRefGoogle Scholar
  33. 33.
    Lu, L. G., Zeng, M. D., Mao, Y. M., Li, J. Q., Wan, M. B., Li, C. Z., Chen, C. W., Fu, Q. C., Wang, J. Y., She, W. M., Cai, X., Ye, J., Zhou, X. Q., Wang, H., Wu, S. M., Tang, M. F., Zhu, J. S., Chen, W. X., & Zhang, H. Q. (2003). World Journal of Gastroenterology, 9, 2480–2483.Google Scholar
  34. 34.
    Si, Y. X., Wang, Z. J., Park, D., Chung, H. Y., Wang, S. F., Yan, L., Yang, J. M., Qian, G. Y., Yin, S. J., & Park, Y. D. (2012). International Journal of Biological Macromolecules, 50, 257–262.CrossRefGoogle Scholar
  35. 35.
    Si, Y. X., Wang, Z. J., Park, D., Jeong, H. O., Ye, S., Chung, H. Y., Yang, J. M., Yin, S. J., & Qian, G. Y. (2012). Bioscience, Biotechnology, and Biochemistry, 76, 1091–1097.Google Scholar
  36. 36.
    Chiari, M. E., Vera, D. M., Palacios, S. M., & Carpinella, M. C. (2011). Bioorganic & Medicinal Chemistry, 19, 3474–3482.CrossRefGoogle Scholar
  37. 37.
    Wu, X. N., & Wang, G. J. (2004). Chinese Journal of Digestive Diseases, 5, 12–16.CrossRefGoogle Scholar
  38. 38.
    Shi, G. F., & Li, Q. (2005). World Journal of Gastroenterology, 11, 268–271.Google Scholar
  39. 39.
    Fan, H., Li, L., Zhang, X., Liu, Y., Yang, C., Yang, Y., & Yin, J. (2009). Mediators of Inflammation, 2009, 704706.CrossRefGoogle Scholar
  40. 40.
    Liu, Y., Zhang, X. J., Yang, C. H., & Fan, H. G. (2009). Brain Research, 1268, 174–180.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Xiao-Xia Liu
    • 1
  • Shi-Qing Sun
    • 1
  • Yu-Jie Wang
    • 1
  • Wei Xu
    • 1
  • Yi-Fang Wang
    • 1
  • Daeui Park
    • 2
  • Hai-Meng Zhou
    • 3
  • Hong-Yan Han
    • 4
  1. 1.College of Biological, Chemical Sciences and EngineeringJiaxing UniversityJiaxingPeople’s Republic of China
  2. 2.Molecular Inflammation Research Center for Aging Intervention (MRCA), College of PharmacyPusan National UniversityBusanKorea
  3. 3.Zhejiang Provincial Key Laboratory of Applied EnzymologyYangtze Delta Region Institute of Tsinghua UniversityJiaxingPeople’s Republic of China
  4. 4.School of Biology and Basic Medical SciencesSoochow UniversitySuzhouPeople’s Republic of China

Personalised recommendations