Advertisement

Applied Biochemistry and Biotechnology

, Volume 168, Issue 8, pp 2387–2397 | Cite as

Efficient Non-sterilized Fermentation of Biomass-Derived Xylose to Lactic Acid by a Thermotolerant Bacillus coagulans NL01

  • Jia Ouyang
  • Cong Cai
  • Hai Chen
  • Ting Jiang
  • Zhaojuan Zheng
Article

Abstract

Xylose is the major pentose and the second most abundant sugar in lignocellulosic feedstock. Its efficient utilization is regarded as a technical barrier to the commercial production of bulk chemicals from lignocellulosic biomass. This work aimed at evaluating the lactic acid production from the biomass-derived xylose using non-sterilized fermentation by Bacillus coagulans NL01. A maximum lactic acid concentration of about 75 g/L was achieved from xylose of 100 g/L after 72 h batch fermentation. Acetic acid and levulinic acid were identified as important inhibitors in xylose fermentation, which markedly reduced lactic acid productivity at 15 and 1.0 g/L, respectively. But low concentrations of formic acid (<2 g/L) exerted a stimulating effect on the lactic acid production. When prehydrolysate containing total 25.45 g/L monosaccharide was fermented with B. coagulans NL01, the same preference for glucose, xylose, and arabinose was observed and18.2 g/L lactic acid was obtained after 48 h fermentation. These results proved that B. coagulans NL01 was potentially well-suited for producing lactic acid from underutilized xylose-rich prehydrolysates.

Keywords

Bacillus coagulans Lactic acid Xylose Non-sterilized fermentation Biomass 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China (31070513) and Excellent Youth Foundation of Jiangsu Province of China (BK2012038). The authors are also grateful to the Major Program of the Natural Science Foundation of Jiangsu Higher Education of China (10KJA22019) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for partial funding of this study.

References

  1. 1.
    Vijayakumar, J., Aravindan, R., & Viruthagiric, T. (2008). Recent trends in the production, purification and application of lactic acid. Chemical and Biochemical Engineering Quarterly, 22, 245–264.Google Scholar
  2. 2.
    Datta, R., & Henry, M. (2006). Lactic acid: recent advances in products, processes and technologies—a review. Journal of Chemical Technology and Biotechnology, 81, 1119–1129.CrossRefGoogle Scholar
  3. 3.
    Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices—a review. Biotechnology Advances, 30, 321–328.CrossRefGoogle Scholar
  4. 4.
    Jem, K. J., van der Pol, J. F., & de Vos, S. (2010). Microbial lactic acid, its polymer poly (lactic acid), and their industrial applications. Microbiology Monographs, 14, 323–346.CrossRefGoogle Scholar
  5. 5.
    Okano, K., Tanaka, T., Ogino, C., Fukuda, H., & Kondo, A. (2010). Biotechnological production of enantiomeric pure lactic acid from renewable resources: recent achievements, perspectives, and limits. Applied Microbiology and Biotechnology, 85, 413–423.CrossRefGoogle Scholar
  6. 6.
    Gao, C., Ma, C. Q., & Xu, P. (2011). Biotechnological routes based on lactic acid production from biomass. Biotechnology Advances, 29, 930–939.CrossRefGoogle Scholar
  7. 7.
    Yadav, A. K., Chaudhari, A. B., & Kothar, R. M. (2011). Bioconversion of renewable resources into lactic acid: an industrial view. Critical Reviews in Biotechnology, 31, 1–19.CrossRefGoogle Scholar
  8. 8.
    Patel, M. A., Ou, M. S., Ingram, L. O., & Shanmugam, K. T. (2005). Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Biotechnolgy Progress, 21, 1453–1460.CrossRefGoogle Scholar
  9. 9.
    Abdel-Rahman, M. A., Tashiroc, Y., & Sonomoto, K. (2011). Lactic acid production from lignocellulose-derived sugars using lactic acid bacteria: overview and limits. Journal of Biotechnology, 156, 286–301.CrossRefGoogle Scholar
  10. 10.
    Chang, T. H., & Yao, S. (2011). Thermophilic, lignocellulolytic bacteria for ethanol production: current state and perspectives. Applied Microbiology and Biotechnology, 92, 13–27.CrossRefGoogle Scholar
  11. 11.
    Chandel, A. K., Chandrasekhar, G., Radhika, K., Ravinder, R., & Ravindra, P. (2011). Bioconversion of pentose sugars into ethanol: a review and future directions. Biotechnology and Molecular Biology Review, 6, 8–20.Google Scholar
  12. 12.
    Girio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Lukasik, R. (2010). Hemicelluloses for fuel ethanol: a review. Bioresource Technology, 101, 4775–4800.CrossRefGoogle Scholar
  13. 13.
    Saito, K., Hasa, Y., & Abe, H. (2012). Production of lactic acid from xylose and wheat straw by Rhizopus oryzae. Journal of Bioscience and Bioengineering, 114, 166–169.CrossRefGoogle Scholar
  14. 14.
    John, R. P., Nampoothiri, K. M., & Pandey, A. (2007). Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 74, 524–534.CrossRefGoogle Scholar
  15. 15.
    Ohara, H., Owaki, M., & Sonomoto, K. (2006). Xylooligosaccharide fermentation with Leuconostoc lactis. Journal of Bioscience and Bioengineering, 101, 415–420.CrossRefGoogle Scholar
  16. 16.
    Moldes, A. B., Torrado, A., Converti, A., & Dominguez, J. M. (2006). Complete bioconversion of hemicellulosic sugars from agricultural residues into lactic acid by Lactobacillus pentosus. Applied Biochemistry and Biotechnology, 135, 219–227.CrossRefGoogle Scholar
  17. 17.
    Patel, M., Ou, M., Ingram, L. O., & Shanmugam, K. T. (2004). Fermentation of sugar cane bagasse hemicellulose hydrolysate to l (+)-lactic acid by a thermotolerant acidophilic Bacillus sp. Biotechnology Letters, 26, 865–868.CrossRefGoogle Scholar
  18. 18.
    Wang, L., Zhao, B., Liu, B., Ma, C. Q., Su, F., Hua, D. L., et al. (2010). Efficient production of l-lactic acid from corncob molasses, a waste by-product in xylitol production, by a newly isolated xylose utilizing Bacillus sp. strain. Bioresource Technology, 101, 7908–7915.CrossRefGoogle Scholar
  19. 19.
    Bischoff, K. M., Liu, S. Q., Hughes, S. R., & Rich, J. O. (2010). Fermentation of corn fiber hydrolysate to lactic acid by the moderate thermophile Bacillus coagulans. Biotechnology Letters, 32, 823–828.CrossRefGoogle Scholar
  20. 20.
    Patel, M., Ou, M., Harbrucker, R., Aldrich, H. C., Buszko, M. L., Ingram, L. O., et al. (2006). Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environment Microbiology, 72, 3228–3235.CrossRefGoogle Scholar
  21. 21.
    Maas, R. H. W., Bakker, R. R., Jansen, M. L. A., Visser, D., de Jong, E., Eggink, G., et al. (2008). Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate. Applied Microbiology and Biotechnology, 78, 751–758.CrossRefGoogle Scholar
  22. 22.
    Ou, M. S., Mohammed, N., Ingram, L. O., & Shanmugam, K. T. (2009). Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts. Applied Biochemistry and Biotechnology, 155, 379–385.CrossRefGoogle Scholar
  23. 23.
    Budhavaram, N. K., & Fan, Z. L. (2009). Production of lactic acid from paper sludge using acid-tolerant, thermophilic Bacillus coagulan strains. Bioresource Technology, 100, 5966–5972.CrossRefGoogle Scholar
  24. 24.
    Walton, S. L., Biscoff, K. M., van Heiningen, A. R. P., & van Walsum, G. P. (2010). Production of lactic acid from hemicellulose extracts by Bacillus coagulans MXL-9. Journal of Industrial Microbiology and Biotechnology, 37, 823–830.CrossRefGoogle Scholar
  25. 25.
    Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology, 74, 25–33.CrossRefGoogle Scholar
  26. 26.
    Zhu, J. J., Yong, Q., Xu, Y., & Yu, S. Y. (2011). Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776. Bioresource Technology, 102, 1663–1668.CrossRefGoogle Scholar
  27. 27.
    Kovács, Á. T., van Hartskamp, M., Kuipers, O. P., & van Kranenburg, R. (2010). Genetic tool development for a new host for biotechnology, the thermotolerant bacterium Bacillus coagulans. Applied and Environment Microbiology, 76, 4085–4088.CrossRefGoogle Scholar
  28. 28.
    Qin, J. Y., Zhao, B., Wang, X. W., Wang, L. M., Yu, B., Ma, Y. H., et al. (2009). Non-sterilized fermentative production of polymer-grade l-lactic acid by a newly isolated thermophilic strain Bacillus sp. 2–6. PLoS One, 4, e4359.CrossRefGoogle Scholar
  29. 29.
    Ou, M. S., Ingram, L. O., & Shanmugam, K. T. (2011). l(+)-Lactic acid production from non-food carbohydrates by thermotolerant Bacillus coagulans. Journal of Industrial Microbiology and Biotechnology, 38, 599–605.CrossRefGoogle Scholar
  30. 30.
    Kothari, U. D., & Lee, Y. Y. (2011). Inhibition effects of dilute-acid prehydrolysate of corn stover on enzymatic hydrolysis of Solka Floc. Applied Biochemistry and Biotechnology, 165, 391–1405.CrossRefGoogle Scholar
  31. 31.
    Cara, C., Ruiz, E., Oliva, G. M., Sáez, F., & Castro, E. (2008). Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 99, 1869–1876.CrossRefGoogle Scholar
  32. 32.
    Larsson, S., Palmqvist, E., Hahn-Hägerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., et al. (1998). The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme and Microbial Technology, 24, 151–159.CrossRefGoogle Scholar
  33. 33.
    Huang, H., Guo, X., Li, D., Liu, M., Wu, J., & Ren, H. (2011). Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids. Bioresource Technology, 102, 7486–7493.CrossRefGoogle Scholar
  34. 34.
    Bellido, C., Bolado, S., Coca, M., Lucas, S., Gonzalez-Benito, G., & Garcia-Cubero, M. T. (2011). Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresource Technology, 102, 10858–10874.CrossRefGoogle Scholar
  35. 35.
    Okano, K., Yoshida, S., Yamda, R., Tanaka, T., Ogino, C., Fukuda, H., et al. (2009). Homo d-lactic acid fermentation from xylose by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in l-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Applied and Environment Microbiology, 24, 7858–7861.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Jia Ouyang
    • 1
  • Cong Cai
    • 1
  • Hai Chen
    • 1
  • Ting Jiang
    • 1
  • Zhaojuan Zheng
    • 1
  1. 1.College of Chemical EngineeringNanjing Forestry UniversityNanjingChina

Personalised recommendations