Advertisement

Applied Biochemistry and Biotechnology

, Volume 168, Issue 8, pp 2136–2147 | Cite as

Comparative Evaluation of Pumice Stone as an Alternative Immobilization Material for 1,3-Propanediol Production from Waste Glycerol by Immobilized Klebsiella pneumoniae

  • Cagdas Gonen
  • Mine Gungormusler
  • Nuri AzbarEmail author
Article

Abstract

In this study, pumice stone (PS), which is a vastly available material in Turkey, was evaluated as an alternative immobilization material in comparison to other commercially available immobilization materials such as glass beads and polyurethane foam. All immobilized bioreactors resulted in much better 1,3-propanediol production from waste glycerol in comparison to the suspended cell culture bioreactor. It was also demonstrated that the locally available PS material is as good as the commercially available immobilization material. The maximum volumetric productivity (8.5 g L−1 h−1) was obtained by the PS material, which is 220 % higher than the suspended cell system. Furthermore, the immobilized bioreactor system was much more robust against cell washout even at very low hydraulic retention time values.

Keywords

1,3-Propanediol Immobilization Klebsiella pneumoniae Glycerol Biopolymer Biodiesel 

Notes

Acknowledgment

The authors wish to thank TUBITAK-CAYDAG under grant no. 109Y150 for the financial support of this study. The data presented in this article were produced within the projects above; however, only the authors of this article are responsible for the results and discussions made herein.

References

  1. 1.
    Mu, Y., Teng, H., Zhang, D. J., Wang, W., & Xiu, Z. L. (2006). Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnology Letters, 28(21), 1755–1759.CrossRefGoogle Scholar
  2. 2.
    Taconi, K. A., Venkataramanan, K. P., & Johnson, D. T. (2009). Growth and solvent production by Clostridium pasteurianum ATCC (R) 6013 (TM) utilizing biodiesel-derived crude glycerol as the sole carbon source. Environmental Progress Sustainable, 28(1), 100–110.CrossRefGoogle Scholar
  3. 3.
    Jun, S. A., Moon, C., Kang, C. H., Kong, S. W., Sang, B. I., & Um, Y. (2010). Microbial fed-batch production of 1,3-propanediol using raw glycerol with suspended and immobilized Klebsiella pneumoniae. Applied Biochemistry and Biotechnology, 161(1–8), 491–501.CrossRefGoogle Scholar
  4. 4.
    Mu, Y., Xiu, Z. L., & Zhang, D. J. (2008). A combined bioprocess of biodiesel production by lipase with microbial production of 1,3-propanediol by Klebsiella pneumoniae. Biochemical Engineering Journal, 40(3), 537–541.CrossRefGoogle Scholar
  5. 5.
    Xu, Y. Z., Liu, H. J., Du, W., Sun, Y., Ou, X. J., & Liu, D. H. (2009). Integrated production for biodiesel and 1,3-propanediol with lipase-catalyzed transesterification and fermentation. Biotechnology Letters, 31(9), 1335–1341.CrossRefGoogle Scholar
  6. 6.
    Amaral, P. F. F., Ferreira, T. F., Fontes, G. C., & Coelho, M. A. Z. (2009). Glycerol valorization: new biotechnological routes. Food Bioproducts Process, 87(C3), 179–186.CrossRefGoogle Scholar
  7. 7.
    Zeng, A. P., & Biebl, H. (2002). Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in Biochemical Engineering/Biotechnology, 74, 239–259.CrossRefGoogle Scholar
  8. 8.
    Johannes, T., Simurdiak, M. R., & Zhao, H. (2006). Biocatalysis. In S. Lee (Ed.), Encyclopedia of chemical processing. New York: Taylor & Francis.Google Scholar
  9. 9.
    Cho, M. H., Joen, S. I., Pyo, S. H., Mun, S., & Kim, J. H. (2006). A novel separation and purification process for 1,3-propanediol. Process Biochemistry, 41(3), 739–744.CrossRefGoogle Scholar
  10. 10.
    Hao, J., Xu, F., Liu, H. J., & Liu, D. H. (2006). Downstream processing of 1,3-propanediol fermentation broth. Journal of Chemical Technology and Biotechnology, 81(1), 102–108.CrossRefGoogle Scholar
  11. 11.
    Patwardhan, P. R., & Srivastava, A. K. (2004). Model-based fed-batch cultivation of R. eutropha for enhanced biopolymer production. Biochemical Engineering Journal, 20(1), 21–28.CrossRefGoogle Scholar
  12. 12.
    Wang, Y. H., Teng, H., & Xiu, Z. L. (2011). Effect of aeration strategy on the metabolic flux of Klebsiella pneumoniae producing 1,3-propanediol in continuous cultures at different glycerol concentrations. Journal of Industrial Microbiology and Biotechnology, 38(6), 705–715.CrossRefGoogle Scholar
  13. 13.
    Bizukojc, M., Dietz, D., Sun, J., & Zeng, A. P. (2010). Metabolic modelling of syntrophic-like growth of a 1,3-propanediol producer, Clostridium butyricum, and a methanogenic archeon, Methanosarcina mazei, under anaerobic conditions. Bioprocess and Biosystems Engineering, 33(4), 507–523.CrossRefGoogle Scholar
  14. 14.
    Zheng, Z. M., Cheng, K. K., Hu, Q. L., Liu, H. J., Guo, N. N., & Liu, D. H. (2008). Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1,3-propanediol fermentation by Klebsiella pneumoniae. Biochemical Engineering Journal, 39(2), 305–310.CrossRefGoogle Scholar
  15. 15.
    Zhu, J. G., Li, S., Ji, X. J., Huang, H., & Hu, N. (2009). Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World Journal of Microbiology and Biotechnology, 25(7), 1217–1223.CrossRefGoogle Scholar
  16. 16.
    Saxena, R. K., Anand, P., Saran, S., & Isar, J. (2009). Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnology Advances, 27(6), 895–913.CrossRefGoogle Scholar
  17. 17.
    Gungormusler, M., Gonen, C., & Azbar, N. (2011). Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture. Bioprocess and Biosystems Engineering, 34(6), 727–733.CrossRefGoogle Scholar
  18. 18.
    Gungormusler, M., Gonen, C., Ozdemir, G., & Azbar, N. (2010). Fermentation medium optimization for 1,3-propanediol production using Taguchi and Box–Behnken experimental designs. Fresenius Environmental Bulletin, 19(12), 2840–2847.Google Scholar
  19. 19.
    Xiu, Z. L., Song, B. H., Wang, Z. T., Sun, L. H., Feng, E. M., & Zeng, A. P. (2004). Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Biochemical Engineering Journal, 19(3), 189–197.CrossRefGoogle Scholar
  20. 20.
    Villegas, C. G., Santos, V. E., Zazo, M., Garcia, J. L., & Garcia-Ochoa, F. (2007). Fermentation of glycerol to 1,3-propanediol by Klebsiella oxytoca NRTL B-199: study of product inhibition. Journal of Biotechnology, 131(2), S102–S102.Google Scholar
  21. 21.
    Biebl, H., Zeng, A. P., Menzel, K., & Deckwer, W. D. (1998). Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Applied Microbiology and Biotechnology, 50(1), 24-29.Google Scholar
  22. 22.
    Zhang, G. L., Ma, B. B., Xu, X. L., Li, C., & Wang, L. W. (2007). Fast conversion of glycerol to 1,3-propanediol by a new strain of Klebsiella pneumoniae. Biochemical Engineering Journal, 37(3), 256–260.CrossRefGoogle Scholar
  23. 23.
    Cheng, K. K., Liu, D. H., Sun, Y., & Liu, W. B. (2004). 1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnology Letters, 26(11), 911–915.CrossRefGoogle Scholar
  24. 24.
    Cheng, K. K., Liu, H. J., & Liu, D. H. (2005). Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnology Letters, 27(1), 19–22.CrossRefGoogle Scholar
  25. 25.
    Zeng, A. P., Ross, A., Biebl, H., Tag, C., Gunzel, B., & Deckwer, W. D. (1994). Multiple product inhibition and growth modeling of Clostridium–Butyricum and Klebsiella–Pneumoniae in glycerol fermentation. Biotechnology and Bioengineering, 44(8), 902–911.CrossRefGoogle Scholar
  26. 26.
    Menzel, K., Ahrens, K., Zeng, A. P., & Deckwer, W. D. (1998). Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnology and Bioengineering, 60(5), 617–626.CrossRefGoogle Scholar
  27. 27.
    Zheng, Z. M., Hu, Q. I., Hao, J., Xu, F., Guo, N. N., Sun, Y., et al. (2008). Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresource Technology, 99(5), 1052–1056.CrossRefGoogle Scholar
  28. 28.
    Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., & Divies, C. (1999). Changes in the proton-motive force in Escherichia coli in response to external oxidoreduction potential. European Journal of Biochemistry, 262(2), 595–599.CrossRefGoogle Scholar
  29. 29.
    Riondet, C., Cachon, R., Wache, Y., Alcaraz, G., & Divies, C. (2000). Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. Journal of Bacteriology, 182(3), 620–626.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Bioengineering Department, Faculty of EngineeringEge UniversityBornovaTurkey

Personalised recommendations