Applied Biochemistry and Biotechnology

, Volume 168, Issue 8, pp 2094–2104 | Cite as

Characterization of a Recombinant Flocculent Saccharomyces cerevisiae Strain That Co-Ferments Glucose and Xylose: II. Influence of pH and Acetic Acid on Ethanol Production



The inhibitory effects of pH and acetic acid on the co-fermentation of glucose and xylose in complex medium by recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated. In the absence of acetic acid, the fermentation performance of strain MA-R4 was similar between pH 4.0–6.0, but was negatively affected at pH 2.5. The addition of acetic acid to batch cultures resulted in negligible inhibition of several fermentation parameters at pH 6.0, whereas the interactive inhibition of pH and acetic acid on the maximum cell and ethanol concentrations, and rates of sugar consumption and ethanol production were observed at pH levels below 5.4. The inhibitory effect of acetic acid was particularly marked for the consumption rate of xylose, as compared with that of glucose. With increasing initial acetic acid concentration, the ethanol yield slightly increased at pH 5.4 and 6.0, but decreased at pH values lower than 4.7. Notably, ethanol production was nearly completely inhibited under low pH (4.0) and high acetic acid (150–200 mM) conditions. Together, these results indicate that the inhibitory effects of acetic acid and pH on ethanol fermentation by MA-R4 are highly synergistic, although the inhibition can be reduced by increasing the medium pH.


Recombinant Saccharomyces cerevisiae Xylose Glucose Ethanol Co-fermentation pH Acetic acid 


  1. 1.
    Hahn-Hägerdal, B., Lindén, T., Senac, T., & Skoog, K. (1991). Applied Biochemistry and Biotechnology, 28–29, 131–144.CrossRefGoogle Scholar
  2. 2.
    van Maris, A. J., Abbott, D. A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M. A., et al. (2006). Antonie Van Leeuwenhoek, 90, 391–418.CrossRefGoogle Scholar
  3. 3.
    Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 17–24.CrossRefGoogle Scholar
  4. 4.
    Parawira, W., & Tekere, M. (2011). Critical Reviews in Biotechnology, 31, 20–31.CrossRefGoogle Scholar
  5. 5.
    Almeida, J. R., Runquist, D., Sànchez, I., Nogué, V., Lidén, G., & Gorwa-Grauslund, M. F. (2011). Biotechnology Journal, 6, 286–299.CrossRefGoogle Scholar
  6. 6.
    Almeida, J. R. M., Modig, T., Petersson, A., Hahn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Journal of Chemical Technology and Biotechnology, 82, 340–349.CrossRefGoogle Scholar
  7. 7.
    Lu, Y., Warner, R., Sedlak, M., Ho, N., & Mosier, N. S. (2009). Biotechnology Progress, 25, 349–356.CrossRefGoogle Scholar
  8. 8.
    Palmqvist, E., & Hahn-Hägerdal, B. (2000). Bioresource Technology, 74, 25–33.CrossRefGoogle Scholar
  9. 9.
    Verduyn, C., Postma, E., Scheffers, W. A., & van Dijken, J. P. (1990). Journal of General Microbiology, 136, 405–412.CrossRefGoogle Scholar
  10. 10.
    Taherzadeh, M. J., Niklasson, C., & Lidén, G. (1997). Chemical Engineering Science, 52, 2653–2659.CrossRefGoogle Scholar
  11. 11.
    Matsushika, A., & Sawayama, S. (2012). Applied Biochemistry and Biotechnology, (in press).Google Scholar
  12. 12.
    Kuriyama, H., Seiko, Y., Murakami, T., Kobayashi, H., & Sonoda, Y. (1985). Journal of Fermentation Technology, 63, 159–165.Google Scholar
  13. 13.
    Matsushika, A., Inoue, H., Murakami, K., Takimura, O., & Sawayama, S. (2009). Bioresource Technology, 100, 2392–2398.CrossRefGoogle Scholar
  14. 14.
    Matsushika, A., Watanabe, S., Kodaki, T., Makino, K., Inoue, H., Murakami, K., et al. (2008). Applied Microbiology and Biotechnology, 81, 243–255.CrossRefGoogle Scholar
  15. 15.
    Matsushika, A., & Sawayama, S. (2010). Applied Biochemistry and Biotechnology, 162, 1952–1960.CrossRefGoogle Scholar
  16. 16.
    Pampulha, M. E., & Loureiro-Dias, M. C. (1989). Applied Microbiology and Biotechnology, 31, 547–550.CrossRefGoogle Scholar
  17. 17.
    Bellissimi, E., van Dijken, J. P., Pronk, J. T., & van Maris, A. J. (2009). FEMS Yeast Research, 9, 358–364.CrossRefGoogle Scholar
  18. 18.
    Casey, E., Sedlak, M., Ho, N. W., & Mosier, N. S. (2010). FEMS Yeast Research, 10, 385–393.CrossRefGoogle Scholar
  19. 19.
    Hasunuma, T., Sanda, T., Yamada, R., Yoshimura, K., Ishii, J., & Kondo, A. (2011). Microbiology Cell Factors, 10, 2.CrossRefGoogle Scholar
  20. 20.
    Maiorella, B. L., Blanch, H. W., & Wilke, C. R. (1984). Biotechnology and Bioengineering, 26, 1155–1166.CrossRefGoogle Scholar
  21. 21.
    Wahlbom, C. F., & Hahn-Hägerdal, B. (2002). Biotechnology and Bioengineering, 78, 172–178.CrossRefGoogle Scholar
  22. 22.
    McFeeters, R. F., & Chen, K. H. (1986). Food Microbiology, 3, 73–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Biomass Refinery Research Center (BRRC)National Institute of Advanced Industrial Science and Technology (AIST)Higashi-HiroshimaJapan
  2. 2.Graduate School of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations