Applied Biochemistry and Biotechnology

, Volume 168, Issue 7, pp 1739–1752 | Cite as

An Efficient and Reproducible Method for in vitro Clonal Multiplication of Rauvolfia tetraphylla L. and Evaluation of Genetic Stability using DNA-Based Markers

  • Mohammad Faisal
  • Abdulrahman A. Alatar
  • Naseem Ahmad
  • Mohammad Anis
  • Ahmad K. Hegazy


An efficient protocol is described for the rapid in vitro clonal propagation of an endangered medicinal plant, Rauvolfia tetraphylla L., through high frequency shoot induction from nodal explants collected from young shoots of a field grown plant. Effects of growth regulators [6-benzyladenine (BA), kinetin (Kin) 2iP, or α-naphthalene acetic acid (NAA)], carbohydrates, different medium [Murashige and Skoog (MS), Woody Plant Medium (WPM), Gamborg medium (B5), Linsmier and Skoog medium (LS)], and various pH levels on in vitro morphogenesis were investigated. The highest frequency of shoot regeneration (90 %) and maximum number of shoot (35.4 ± 2.3) per explant were observed on WPM medium supplemented with 7.5 μM BA, 2.5 μM NAA, and 30 g/l sucrose at pH 5.8. Well-developed shoots, 4–5 cm in length, were successfully rooted ex vitro at 90 % by a 30-min pulse treatment with 150 μM IBA prior to their transfer in planting substrates. The survival rate of transplantation reached 90 % when transferred to field condition. Genetic stability of micropropagated plantlets was assessed and compared with mother plant using Random Amplified Polymorphic DNA and Inter Simple Sequence Repeats markers. No variation was observed in DNA fingerprinting patterns among the micropropagated plants, which were similar to that of the donor plant illustrating their genetic uniformity and clonal fidelity. This confirms that clonal propagation of this plant using axillary shoot buds can be used for commercial exploitation of the selected genotype where a high degree of fidelity is an essential prerequisite. The work contributed to a better in vitro regeneration and clonal mass multiplication of R. tetraphylla and to develop a strategy for the germplasm conservation of this endangered medicinal plant.


Acclimatization Conservation Ex vitro rooting Micropropagation Genetic fidelity RAPD ISSR 



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for financial assistance through the research group project No. RGP-VPP-175.


  1. 1.
    Farooqi, A. A., & Sreeramu, B. S. (2001). Cultivation of medicinal and aromatic crops (pp. 210–211). India: University Press Ltd.Google Scholar
  2. 2.
    Villar, R., Calleja, J. M., Morales, C., & Caceres, A. (1998). Screening of Guatemalan medicinal Plants for platelet antisegregant activity. Phytological Research, 11, 441–445.CrossRefGoogle Scholar
  3. 3.
    Anonymous. (2003). The wealth of India: A Dictionary of Indian Raw Materials and Industrial Products. New Delhi: CSIR.Google Scholar
  4. 4.
    Faisal, M., & Anis, M. (2005). Shoot multiplication in Rauvolfia tetraphylla using thidiazuron. Plant Cell, Tissue and Organ Culture, 80, 187–190.CrossRefGoogle Scholar
  5. 5.
    Larkin, P., & Scowcroft, W. R. (1981). Somaclonal variation, a novel source of variability from cell cultures for plant improvement. Theoretical and Applied Genetics, 60, 197–214.CrossRefGoogle Scholar
  6. 6.
    Gould, A. R. (1986). Factors controlling generation of variability in vitro. In I. K. Vasil (Ed.), Cell culture and somatic cell genetics in plants. 3. Plant regeneration and genetic variability (pp. 549–567). Orlando: Academic.Google Scholar
  7. 7.
    Smykal, P., Valledore, L., Rodriguez, R., & Griga, M. (2007). Assesment of genetic and epigenetic stability in long-term in in vitro shoot culture of pea (Pisum sativum). Plant Cell Reports, 26, 1985–1998.CrossRefGoogle Scholar
  8. 8.
    Bhatia, R., Singh, K. P., Jhang, T., & Sharma, T. R. (2009). Assessment of clonal fidelity of micropropagated gerbera plants by ISSR markers. Scientia Horticulturae, 119, 208–211.CrossRefGoogle Scholar
  9. 9.
    Rathore, M. S., Chikara, J., Shaik, G., Mastan, S. G., Rahman, H., Anand, K. G. V., et al. (2011). Assessment of genetic stability and instability of tissue culture-propagated plantlets of Aloe vera L. by RAPD and ISSR markers. Biotechnology and Applied Biochemistry, 165, 1356–1365.CrossRefGoogle Scholar
  10. 10.
    Sharma, D., Sharma, S., & Baruah, A. (1999). Micropropagation and in vitro flowering of Rauvolfia tetraphylla; a potent sourceof antihypertensive drug. Planta Medica, 65, 277–278.CrossRefGoogle Scholar
  11. 11.
    Lloyd, G., & McCown, B. (1981). Commercially-feasible micropropagation of Mountain laurel, Kalmia latifolia, by use of shoot tip culture. The International Plant Propagators Society, 30, 421–427.Google Scholar
  12. 12.
    Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.CrossRefGoogle Scholar
  13. 13.
    Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrients requirement of suspension cultures of soybean root cells. Experimental Cell Research, 50, 151–158.CrossRefGoogle Scholar
  14. 14.
    Schenk, R. U., & Hildebrandt, A. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyle-donous plant cell cultures. Canadian Journal of Botany, 50, 199–204.CrossRefGoogle Scholar
  15. 15.
    Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.Google Scholar
  16. 16.
    Williams, K., Kubelik, A. R., Rafalski, J. A., & Tingey, S. V. (1990). DNA polymorphisms amplified by arbitary primers are useful as genetic markers. Nucleic Acids Research, 18, 1631–1635.CrossRefGoogle Scholar
  17. 17.
    Caro, L. A., Polci, P. A., Lindström, L. I., Echenique, C. V., & Hernández, L. F. (2002). Micropropagation of Prosopis chilensis (Mol.) Stuntz from young and mature plants. Biocell, 26, 25–33.Google Scholar
  18. 18.
    Haw, A. B., & Keng, C. L. (2003). Micropropagation of Spilanthes acmella L., a bio-insecticide plant, through proliferation of multiple shoots. Journal of Applied Horticultre, 5, 65–68.Google Scholar
  19. 19.
    Faisal, M., Ahmad, N., & Anis, M. (2007). An efficient micropropagation system for Tylophora indica: an endangered, medicinally important plant. Plant Biotechnology Reports, 1, 155–161.CrossRefGoogle Scholar
  20. 20.
    Jahan, A. A., Anis, M., & Aref, I. M. (2011). Preconditioning of axillary buds in thidiazuron-supplemented liquid media improves in vitro shoot multiplication in Nyctanthes arbor-tristis L. Biotechnology and Applied Biochemistry, 163, 851–859.CrossRefGoogle Scholar
  21. 21.
    Benmahioul, B., Dorion, N., Kaid-Harche, M., & Daguin, F. (2012). Micropropagation and ex vitro rooting of pistachio (Pistacia vera L.). Plant Cell and Tissue Culture, 108, 353–358.CrossRefGoogle Scholar
  22. 22.
    Shahzad, A., Parveen, S., & Fatema, M. (2011). Development of a regeneration system via nodal segment culture in Veronica anagallis-aquatica L.—an amphibious medicinal plant. Journal of Plant Interactions, 6, 61–68.CrossRefGoogle Scholar
  23. 23.
    Faisal, M., Siddique, I., & Anis, M. (2006). In vitro rapid regeneration of plantlets from nodal explants of Mucuna pruriens—a valuable medicinal plant. The Annals of Applied Biology, 148, 1–6.CrossRefGoogle Scholar
  24. 24.
    Nagarathnamma, M., Sudarshana, M. S., Niranjan, M. H., & Pandurangamurhty, G. (2010). Rapid regeneration of Enicostemma littorale Blume from leaf and stem cultures. Journal of Plant Interactions, 5, 69–70.CrossRefGoogle Scholar
  25. 25.
    Ma, G., TeixeiradaSilva, J. A., Lu, J., Zhang, X., & Zhao, J. (2011). Shoot organogenesis and plant regeneration in Metabriggsia ovalifolia. Plant Cell, Tissue and Organ Culture, 105, 355–361.CrossRefGoogle Scholar
  26. 26.
    Alatar, A. A., Faisal, M., Hegazy, A. K., & Hend, A. A. (2012). High frequency shoots regeneration and plant establishment of Rauvolfia serpentine; an endangered medicinal plant. Journal of Medicinal Plants Research, 6, 3324–3329.Google Scholar
  27. 27.
    Samir, C. D. (2004). Clonal propagation of dwarf raspberry (Rubus pubescens Raf.) through in vitro axillary shoot proliferation. Plant Growth Regulation, 43, 179–186.CrossRefGoogle Scholar
  28. 28.
    Nordstrom, A., Tarkowski, P., Tarkowska, D., Norbaek, R., Astot, C., Dolezal, K., et al. (2004). Auxin regulation of cytokinin biosynthesis in Arbdiopsis thaliana: a factor of potential importance for auxin–cytokinin-regulated development. Proceedings of the National Academy of Sciences of the United States of America, 101, 8039–8044.CrossRefGoogle Scholar
  29. 29.
    Declerck, V., & Korban, S. S. (1994). Effects of source of macro-nutrients and plant growth regulator concentrations on shoot proliferation of Cornus florida. Plant Cell, Tissue and Organ Culture, 38, 57–60.CrossRefGoogle Scholar
  30. 30.
    Bhatt, I. D., & Dhar, U. (2004). Factors controlling micropropagation of Myrica esculenta buch.—Ham. ex D. Don: a high value wild edible of Kumaun Himalaya. African Journal of Biotechnology, 3, 534–540.Google Scholar
  31. 31.
    Raghu, A. V., Geetha, S. P., Martin, G., Balachandran, I., & Mohanan, K. V. (2010). Micropropagation of Tribulus terrestris. Indian Journal of Natural Products and Resources, 1, 232–235.Google Scholar
  32. 32.
    Minocha, S. C. (1987). pH of the medium and growth and metabolism of cells in culture. In: J. M. Bonga & D. J. Durzan (Eds.). Cell and Tissue culture in Forestry. Vol. 1. General Principles and Biotechnology (pp. 125–144). Dordrecht, Netherlands: Martinus Nijhoff Publishers.Google Scholar
  33. 33.
    Brown, D. C. W., Leung, D. W. M., & Thorpe, T. A. (1979). Osmotic requirement for shoot formation in tobacco callus. Physiologia Plantarum, 46, 36–41.CrossRefGoogle Scholar
  34. 34.
    Gurel, S., & Gulsen, Y. (1998). The effects of sucrose agar and pH levels on in vitro shoot production of Almond (Amygdalus communis L.). Turkish Journal of Botany, 22, 363–373.Google Scholar
  35. 35.
    Naik, M. P., et al. (2010). Effects of sucrose and pH levels on in vitro shoot regeneration from leaf explants of Bacopa monnieri and accumulation of bacoside A in regenerated shoots. Plant Cell, Tissue and Organ Culture, 100, 235–239.CrossRefGoogle Scholar
  36. 36.
    Bhatia, P., & Ashwath, N. (2005). Effect of medium pH on shoot regeneration from the cotyledonary explants of tomato. Biotechnology, 4, 7–10.CrossRefGoogle Scholar
  37. 37.
    De Paiva Neto, V. B., Ribeiro da Mota, T., & Otoni, W. C. (2003). Direct organogenesis from hypocotyl-derived explants of annatto (Bixa orellana). Plant Cell, Tissue and Organ Culture, 75, 159–167.CrossRefGoogle Scholar
  38. 38.
    Sujatha, G., & Kumari, B. D. R. (2008). Micropropagation, encapsulation and growth of Artemisia vulgaris node explants for germplasm preservation. South African Journal of Botany, 74, 93–100.CrossRefGoogle Scholar
  39. 39.
    Steffen, J. D., Sachs, R. M., & Hackett, W. P. (1988). Growth and development of reproductive and vegetative tissues of Bougainvillea cultured in vitro as a function of carbohydrate. American Journal of Botany, 75, 1219–1224.CrossRefGoogle Scholar
  40. 40.
    Wright, M. S., Koehler, S. M., Hinchee, M. A., & Carnes, M. G. (1986). Plant regeneration by organogenesis in Glycine max. Plant Cell Reports, 5, 150–154.CrossRefGoogle Scholar
  41. 41.
    Martin, K. P. (2003). Rapid in vitro multiplication and ex vitro rooting of Rotula aquatica Lour., a rare rhoeophytic woody medicinal plant. Plant Cell Reports, 21, 415–420.Google Scholar
  42. 42.
    Martins, M., Sarmento, D., & Oliveira, M. M. (2004). Genetic stability of micropropagated almond plantlets, as assessed by RAPD and ISSR markers. Plant Cell Reports, 23, 492–496.CrossRefGoogle Scholar
  43. 43.
    Borchetia, S., Das, S. C., Handique, P. J., & Sudripta, D. (2009). High multiplication frequency and genetic stability for commercialization of the three varieties of micropropagated tea plants (Camellia spp.). Scientia Horticulturae, 120, 544–550.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohammad Faisal
    • 1
  • Abdulrahman A. Alatar
    • 1
  • Naseem Ahmad
    • 2
  • Mohammad Anis
    • 2
  • Ahmad K. Hegazy
    • 1
  1. 1.Department of Botany & Microbiology, College of ScienceKing Saud UniversityRiyadhKSA
  2. 2.Department of BotanyAligarh Muslim UniversityAligarhIndia

Personalised recommendations